Skip to main content

NASA will try bringing the Hubble telescope back online on Friday

The Hubble Space Telescope recently suffered a glitch that made it go into safe mode, so it has not been collecting new science data since November 23. But on Friday, December 8, NASA will attempt to get the telescope up and running again by tweaking the operation of one of its three gyros.

The gyros are responsible for keeping the telescope pointed in the right direction, and an error in one of them put the telescope into safe mode to prevent any damage occurring to its hardware. Although it is theoretically possible for the telescope to operate with just one gyro, this would be less efficient and observing time would be lost as it would take longer for the telescope to switch between targets. So ideally, all three gyros can be operational.

The Hubble Space Telescope orbits Earth.
NASA

The problem with the telescope was first shared on November 29, when NASA announced it was performing tests to understand the issue. Now, the tests are complete and NASA plans to resume operations. “After analyzing the data, the team has determined science operations can resume under three-gyro control,” NASA wrote in a new update. “Based on the performance observed during the tests, the team has decided to operate the gyros in a higher-precision mode during science observations. Hubble’s instruments and the observatory itself remain stable and in good health. ”

The Hubble Space Telescope is more than 30 years old, and it still produces a huge amount of valuable science data and beautiful images of the cosmos. But its hardware is showing its age, and it has had problems in the past such as a computer error that occurred in October 2021 due to issues with synchronization between the computer and the telescope’s instruments. It was eventually fixed by December 2021.

That followed another computer problem in summer 2021 that required switching from Hubble’s primary computer to its backup. Space missions like Hubble are typically built with multiple layers of redundancy so that the failure of one part won’t take down the entire mission, which is why there was a backup available.

The gyros that are the source of the current problem are components that tend to have a limited life span. The telescope had six gyros after its last servicing mission but three of them failed within a few years, leaving just the three that are currently operational. Hubble engineers have also tested out using just two at a time to help extend the telescope’s life even further.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
The 60 best space photos of all time from Nasa, Hubble, and more
This landscape of “mountains” and “valleys” speckled with glittering stars is actually the edge of a nearby, young, star-forming region called NGC 3324 in the Carina Nebula. Captured in infrared light by NASA’s new James Webb Space Telescope, this image reveals for the first time previously invisible areas of star birth.

We're living through a golden age of space exploration, from rovers landing on Mars to astronauts living on board the International Space Station to the most complex and capable telescopes ever devised sending back stunning images of the cosmos. With technology like the high definition cameras on the Perseverance rover and the incredible sensitive infrared detectors on the James Webb Space Telescope, we're getting new views of the world beyond our own planet every day.

Some images of space stay entrenched in the public imagination, like the famous Pale blue Dot photos from 1990. It shows Earth as seen by the Voyager spacecraft just minutes before its camera was turned off. Traveling beyond the orbit of Pluto, the image shows the view when Voyager turned back around and viewed Earth -- the tiny, almost imperceptible dot seen against the emptiness of space.

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more