Skip to main content

Hubble images a star throwing out jets of gas in a rare phenomenon

The image from the Hubble Space Telescope shared by NASA this week is a striking pair of jets spraying outward from a newly born star, formed when an unusually active star throws off streams of ionized gas. This strange-looking cosmic phenomenon is a rare sight called a Herbig-Haro object, in this case, designated HH111.

“These spectacular objects develop under very specific circumstances,” Hubble scientists write. “Newly formed stars are often very active, and in some cases they expel very narrow jets of rapidly moving ionized gas — gas that is so hot that its molecules and atoms have lost their electrons, making the gas highly charged. The streams of ionized gas then collide with the clouds of gas and dust surrounding newly formed stars at speeds of hundreds of miles per second. It is these energetic collisions that create Herbig-Haro objects such as HH111.”

A striking image from the Hubble Space Telescope featuring a relatively rare celestial phenomenon known as a Herbig-Haro object.
This striking image features a relatively rare celestial phenomenon known as a Herbig-Haro object. This particular object, named HH111, was imaged by the NASA/ESA Hubble Space Telescope’s Wide Field Camera 3 (WFC3). ESA/Hubble & NASA, B. Nisini

Hubble has previously imaged an even rarer sight, which is a pair of Herbig-Haro objects located in the constellation of Vela (the Sails). Those two objects were instrumental in astronomers understanding what these objects were for the first time, as they were previously thought to be emission nebulae. The new class of objects was named for the first two astronomers to study them in depth, George Herbig and Guillermo Haro.

To capture the image above, Hubble used its Wide Field Camera 3 (WFC3). It is difficult to image Herbig-Haro objects because even though they give out a lot of light in the visible wavelength, much of this is absorbed by the dust and gas surrounding them. So to image the object, the WFC3 looked in the infrared wavelength, in which the object still shines, but the light is no longer blocked by dust.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Tatooine-like exoplanet orbits two stars in rare astronomical discovery
An artist's illustration shows that the stars in the TOI 1338 system make an eclipsing binary — they circle each other in our plane of view.

Anyone who has watched Star Wars has likely found themselves enchanted by the views from Luke's home planet of Tatooine, with its pair of suns visible in the sky over the desert. As visually striking as this concept it, it isn't purely fantasy: there do exist planets that orbit two stars, called circumbinary systems, and standing on one of these planets you would see two stars in the sky.

Astronomers recently discovered one such planet, named BEBOP-1c. Located in the same system as a previously discovered planet, TOI-1338b, the team was trying to measure the mass of the older known planet when they discovered the new one. “Only 12 circumbinary systems are known so far, and this is only the second that hosts more than one planet,” said one of the researchers, David Martin of Ohio State University, in a statement.

Read more
Hubble image of the week shows an unusual jellyfish galaxy
The jellyfish galaxy JO206 trails across this image from the NASA/ESA Hubble Space Telescope, showcasing a colorful star-forming disk surrounded by a pale, luminous cloud of dust. A handful of foreground bright stars with crisscross diffraction spikes stands out against an inky black backdrop at the bottom of the image. JO206 lies over 700 million light-years from Earth in the constellation Aquarius.

This week's image from the Hubble Space Telescope shows an unusual type of galaxy named for its aquatic look-alike: a jellyfish.

The jellyfish galaxy JO206 is shown below in an image taken using Hubble's Wide Field Camera 3 instrument. Located 700 million light-years away, in the constellation of Aquarius, this image of the galaxy shows both the bright center of the galaxy and its long tendrils reaching out toward the bottom right. It is these tendrils that give jellyfish galaxies their names, and they are formed through a process called ram pressure stripping.

Read more
Hubble scientists create tool for erasing satellite trails from images
This image captures the streak of an Earth-orbiting artificial satellite crossing Hubble's field of view during an observation of "The Mice" interacting galaxies (NGC 4676). A typical satellite trail is very thin and will affect less than 0.5% of a single Hubble exposure. Though in this case the satellite overlaps a portion of the target galaxy, the observation quality is not affected. That's because multiple exposures are taken of the same target. And the satellite trail is not in other frames. Developers at the Space Telescope Science Institute in Baltimore, Maryland, have software that identifies the bad pixels from the satellite photobombing, the extent to which they affect the image, and then flags them. When flagged, scientists can recover the full field of view. Even as the number of satellites increases over the decade, these tools for cleaning the images will still be applicable.

With ever-increasing numbers of satellites in the sky, astronomers have repeatedly expressed worry over how these satellites could impact scientific research. Earlier this year, a study of Hubble Space Telescope observations showed how some images were being ruined by streaks of light coming from satellites -- and while only a small percentage of Hubble images were affected, the authors raised concerns that with the projected number of satellites set to explode in the next decade, the problem could become serious.

Now, astronomers at the Space Telescope Science Institute (STScI), which runs Hubble, have come up with a tool to deal with satellite streaks in Hubble images. "We developed a new tool to identify satellite trails that is an improvement over the previous satellite software because it is much more sensitive. So we think it will be better for identifying and removing satellite trails in Hubble images," said Dave Stark of STScI in a statement.

Read more