Skip to main content

Hubble images a pair of galaxies caught in the process of merging

After last week’s image of the week from the Hubble Space Telescope showed a cluster of galaxies that appeared to be very close to each other but actually weren’t, this week’s image shows two images that are practically on top of each other. The two galaxies shown in the image below, NGC 6040 and LEDA 59642, are so close that they are interacting and have a shared name as a pair, Arp 122.

This NASA/ESA Hubble Space Telescope image features Arp 122, a peculiar galaxy that in fact comprises two galaxies – NGC 6040, the tilted, warped spiral galaxy and LEDA 59642, the round, face-on spiral – that are in the midst of a collision.
This NASA/ESA Hubble Space Telescope image features Arp 122, a peculiar galaxy that in fact comprises two galaxies – NGC 6040, the tilted, warped spiral galaxy and LEDA 59642, the round, face-on spiral – that are in the midst of a collision. ESA/Hubble & NASA, J. Dalcanton, Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA Acknowledgement: L. Shatz

NGC 6040 is the galaxy on the top, which is stretched into a long, thin shape by the tremendous force of gravity from the rounder, face-on galaxy in the center-right, LEDA 59642. When galaxies come close together, the forces of gravity from both massive objects can interact and twist or distort one or both of the galaxies into unusual shapes, as has happened here.

The colliding of two galaxies is an epic event, and it can result in the destruction of one galaxy. At other times, the two colliding galaxies can merge into one. After hundreds of millions of years, the two can become one even larger galaxy, as may happen to Arp 122.

“Galaxies are composed of stars and their solar systems, dust, gas, and invisible dark matter. In galactic collisions, therefore, these constituent components may experience enormous changes in the gravitational forces acting on them,” Hubble scientists explain. “In time, this completely changes the structure of the two (or more) colliding galaxies, and sometimes ultimately results in a single, merged galaxy. That may well be what results from the collision pictured in this image.”

Our own galaxy, the Milky Way, is scheduled to collide with our galactic neighbor, the Andromeda galaxy, in around four billion years. That collision would likely create a giant elliptical galaxy as a merger between the two.

However, another theory states that before that happens, the Milky Way could collide with a smaller satellite galaxy called the Large Magellanic Cloud in around two billion years’ time. This theory states that the forces of the two colliding galaxies could spur the supermassive black hole at the center of our galaxy into overdrive, causing it to swell in size and send out powerful jets of radiation.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spots a bright galaxy peering out from behind a dark nebula
The subject of this image taken with the NASA/ESA Hubble Space Telescope is the spiral galaxy IC 4633, located 100 million light-years away from us in the constellation Apus. IC 4633 is a galaxy rich in star-forming activity and also hosts an active galactic nucleus at its core. From our point of view, the galaxy is tilted mostly towards us, giving astronomers a fairly good view of its billions of stars.

A new image from the Hubble Space Telescope shows a galaxy partly hidden by a huge cloud of dust known as a dark nebula. The galaxy IC 4633 still shines brightly and beautifully in the main part of the image, but to the bottom right, you can see dark smudges of dust that are blocking the light from this part of the galaxy.

Taken using Hubble's Advanced Camera for Surveys (ACS) instrument, the image also incorporates data from the DECam instrument on the Víctor M. Blanco 4-meter Telescope, which is located in Chile. By bringing together data from the space-based Hubble and the ground-based DECam, astronomers can get a better look at this galaxy, located 100 million light-years away, and the dark dust partially obscuring it.

Read more
Stunning image shows the magnetic fields of our galaxy’s supermassive black hole
The Event Horizon Telescope (EHT) collaboration, who produced the first ever image of our Milky Way black hole released in 2022, has captured a new view of the massive object at the center of our Galaxy: how it looks in polarized light. This is the first time astronomers have been able to measure polarization, a signature of magnetic fields, this close to the edge of Sagittarius A*. This image shows the polarized view of the Milky Way black hole. The lines mark the orientation of polarization, which is related to the magnetic field around the shadow of the black hole.

The Event Horizon Telescope collaboration, the group that took the historic first-ever image of a black hole, is back with a new stunning black hole image. This one shows the magnetic fields twirling around the supermassive black hole at the heart of our galaxy, Sagittarius A*.

Black holes are hard to image because they swallow anything that comes close to them, even light, due to their immensely powerful gravity. However, that doesn't mean they are invisible. The black hole itself can't be seen, but the swirling matter around the event horizon's edges glows brightly enough to be imaged. This new image takes advantage of a feature of light called polarization, revealing the powerful magnetic fields that twirl around the enormous black hole.

Read more
Hubble captures the dramatic jets of a baby star
FS Tau is a multi-star system made up of FS Tau A, the bright star-like object near the middle of the image, and FS Tau B (Haro 6-5B), the bright object to the far right that is partially obscured by a dark, vertical lane of dust. The young objects are surrounded by softly illuminated gas and dust of this stellar nursery. The system is only about 2.8 million years old, very young for a star system. Our Sun, by contrast, is about 4.6 billion years old.

A new image from the Hubble Space Telescope shows the drama that unfolds as a new star is born. Within a swirling cloud of dust and gas, a newly formed star is giving off powerful jets that blast away material and cut through the nearby dust of the surrounding nebula to create this stunning vista.

The image shows a system called FS Tau, located 450 light-years away in a region called Taurus-Auriga. Within this region are many stellar nurseries with new stars forming, making it a favorite target for astronomers studying star formation. But this particular system stands out for the dramatic nature of its newborn star, which has formed an epic structure called a Herbig-Haro object.

Read more