Skip to main content

Merged galaxy gives a glimpse at the future of the Milky Way

At the heart of almost every galaxy lies an enormous black hole. These monsters are so massive that they get a classification of their own: supermassive black holes, with masses millions or even billions of times the mass of our sun. And when two galaxies collide, their supermassive black holes get closer and closer until these beasts eventually merge as well.

This almost incomprehensible process is on display in an image recently shared by the European Southern Observatory (ESO), showing an almost-merged galaxy that contains the closest pair of supermassive black holes ever discovered at just 1,600 light years apart. Galaxy NGC 7727 started off as two galaxies, which began merging around a billion years ago, and within the next few hundred million years, the two supermassive black holes are set to collide, creating an even bigger black hole in the process.

The galaxy NGC 7727 was born from the merger of two galaxies that started around a billion years ago. The cosmic dance of the two galaxies has resulted in the spectacular wispy shape of NGC 7727. At the heart of the galaxy, two supermassive black holes are spiralling closer to each other, expected to merge within 250 million years, the blink of an eye in astronomical time. This image of NGC 7727 was captured by the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) instrument at ESO’s Very Large Telescope (VLT).
The galaxy NGC 7727 was born from the merger of two galaxies that started around a billion years ago. This image of NGC 7727 was captured by the FOcal Reducer and low dispersion Spectrograph 2 (FORS2) instrument at ESO’s Very Large Telescope (VLT). ESO

The image was taken using the Very Large Telescope, a ground-based telescope located in the Atacama Desert in Chile that is made up of four individual telescopes, each of which has a primary mirror 8.2 meters across. On one of these telescopes, named VLT UT1, is an instrument called the FOcal Reducer and low dispersion Spectrograph 2 or FORS2, which is capable of taking spectrometry data from multiple targets at the same time as well as measuring the polarization of light.

Recommended Videos

FORS2 captured the galaxy in which the two black holes are approaching each other in this image, showing how areas of stars, dust, and gas around the edges of the galaxy are stretched out into space, creating tails that reach out from the galaxy’s main body.

This image also provides a creepy preview of what could eventually happen to our home galaxy, the Milky Way, when it merges with the nearby Andromeda Galaxy in billions of years. As ESO writes, “Our home galaxy, which also sports a supermassive black hole at its center, is on a path to merge with our closest large neighbor, the Andromeda Galaxy, billions of years from now. Perhaps the resulting galaxy will look something similar to the cosmic dance we see in NGC 7727, so this image could be giving us a glimpse into the future.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more
James Webb spots another pair of galaxies forming a question mark
The galaxy cluster MACS-J0417.5-1154 is so massive it is warping the fabric of space-time and distorting the appearance of galaxies behind it, an effect known as gravitational lensing. This natural phenomenon magnifies distant galaxies and can also make them appear in an image multiple times, as NASA’s James Webb Space Telescope saw here.

The internet had a lot of fun last year when eagle-eyed viewers spotted a galaxy that looked like a question mark in an image from the James Webb Space Telescope. Now, Webb has stumbled across another questioning galaxy, and the reasons for its unusual shape reveal an important fact about how the telescope looks at some of the most distant galaxies ever observed.

The new question mark-shaped galaxy is part of an image of galaxy cluster MACS-J0417.5-1154, which is so massive that it distorts space-time. Extremely massive objects -- in this case, a cluster of many galaxies -- exert so much gravitational force that they bend space, so the light traveling past these objects is stretched. It's similar using a magnifying glass. In some cases, this effect, called gravitational lensing, can even make the same galaxy appear multiple times in different places within one image.

Read more
ISS astronaut’s stunning time-lapse video includes the Milky Way
An image taken from the ISS showing featuring Earth, an aurora, the Milky Way, and the station itself.

A NASA astronaut aboard the International Space Station (ISS) has shared a breathtaking time-lapse video featuring Earth, an aurora, the Milky Way, and the station itself.

Matthew Dominick, who’s been on the orbital outpost since March, shared the amazing 27-second sequence (below) on social media on Sunday.

Read more