Skip to main content

James Webb spots carbon dioxide on Europa, supporting theory of habitability

As well as looking out into distant star systems, the James Webb Space Telescope also observes targets right here in our own solar system — and recently it has made an intriguing discovery about Europa, the moon of Jupiter. Europa is a location of great interest to scientists because it is one of the most likely places in the solar system to support life beyond Earth, and new findings could make that possibility more likely.

From orbit, Europa appears icy, but previous observations like those made by Hubble in 2012 showed that there were plumes of water erupting from the surface — suggesting that there is a liquid water ocean beneath the thick, icy crust. This salty ocean is a prime target for habitability research, but it wasn’t known whether this ocean contained the carbon-related materials that are needed for life.

The new observations using Webb’s NIRSpec instrument found carbon dioxide on the planet’s surface, and the researchers believe that this came from the ocean beneath the icy crust. This supports the idea that there are carbon compounds in this ocean, which could mean it is habitable.

Webb’s NIRCam (Near Infrared Camera) captured this picture of the surface of Jupiter’s moon Europa. Webb identified carbon dioxide on the icy surface of Europa that likely originated in the moon’s subsurface ocean. This discovery has important implications for the potential habitability of Europa’s ocean. The moon appears mostly blue because it is brighter at shorter infrared wavelengths. The white features correspond with the chaos terrain Powys Regio (left) and Tara Regio (centre and right), which show enhanced carbon dioxide ice on the surface.
Webb’s NIRCam (Near Infrared Camera) captured this picture of the surface of Jupiter’s moon Europa. Webb identified carbon dioxide on the icy surface of Europa that likely originated in the moon’s subsurface ocean. This discovery has important implications for the potential habitability of Europa’s ocean. The moon appears mostly blue because it is brighter at shorter infrared wavelengths. The white features correspond with the chaotic terrain Powys Regio (left) and Tara Regio (center and right), which show enhanced carbon dioxide ice on the surface. [Image description: A blue-and-white sphere against a black background is somewhat reminiscent of the famous “Blue Marble” picture of Earth from space. With fuzzy, diffuse edges, this sphere features darker blue patches in most of the northern hemisphere facing the viewer. One, large, crescent-shaped, white patch extends along the left side of the southern hemisphere facing the viewer, and a larger, blobby, white patch covers the middle latitudes of the right side of the southern hemisphere. Lighter blue regions border these white patches in the south.] NASA, ESA, CSA, G. Villanueva (NASA/GSFC), S. Trumbo (Cornell Univ.), A. Pagan (STScI)
“On Earth, life likes chemical diversity — the more diversity, the better. We’re carbon-based life. Understanding the chemistry of Europa’s ocean will help us determine whether it’s hostile to life as we know it, or whether it might be a good place for life,” said one of the researchers, Geronimo Villanueva of NASA’s Goddard Space Flight Center, in a statement.

The researchers considered whether the carbon dioxide they observed could have come from another source other than the subsurface ocean, such as being carried by a meteorite that struck the moon. However, carbon dioxide is unstable on the moon’s surface which implies that it must have arrived there relatively recently. The detection was also made in a particular region of the moon where there is younger terrain, so it is unlikely that the source could have been an ancient meteorite impact.

“We now think that we have observational evidence that the carbon we see on Europa’s surface came from the ocean. That’s not a trivial thing. Carbon is a biologically essential element,” said fellow researcher Samantha Trumbo of Cornell University.

Finding carbon molecules is exciting, but it is a long way from confirming that Europa is habitable. For more information, we’ll need in-depth observations like those that will be collected by the JUICE and upcoming Europa Clipper missions. Eventually, the ideal scenario would be to send a mission that can pass through the surface and probe the ocean itself.

“Scientists are debating to what extent Europa’s ocean connects to its surface. I think that question has been a big driver of Europa exploration,” said Villanueva. “This suggests that we may be able to learn some basic things about the ocean’s composition even before we drill through the ice to get the full picture.”

The research is published in two papers in the journal Science.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Jupiter’s icy moon Europa may be light on oxygen, lowering habitability hopes
This view of Jupiter’s icy moon Europa was captured by the JunoCam imager aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022.

When scientists look out into the solar system for places other than Earth that might be capable of hosting life, one of the leading locations of interest is Jupiter's moon Europa. Even though it is far from the sun and it appears on the surface to be icy and inhospitable, it has a liquid water ocean located beneath a thick icy crust, which could potentially allow for life to survive there. However, new research pours some cold water on this possibility, as it seems that the moon produces less oxygen than previously thought.

Researchers used data from the Juno mission to Jupiter, which has also performed flybys of Europa, to see how much hydrogen was being released from the moon's surface. Measured using Juno's Jovian Auroral Distributions Experiment (JADE) instrument, this data can be used to estimate how much oxygen is being produced -- and it's thought to be just 26 pounds every second, compared to previous estimates of up to 2,000 pounds per second.

Read more
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more