Skip to main content

James Webb spots carbon dioxide on Europa, supporting theory of habitability

As well as looking out into distant star systems, the James Webb Space Telescope also observes targets right here in our own solar system — and recently it has made an intriguing discovery about Europa, the moon of Jupiter. Europa is a location of great interest to scientists because it is one of the most likely places in the solar system to support life beyond Earth, and new findings could make that possibility more likely.

From orbit, Europa appears icy, but previous observations like those made by Hubble in 2012 showed that there were plumes of water erupting from the surface — suggesting that there is a liquid water ocean beneath the thick, icy crust. This salty ocean is a prime target for habitability research, but it wasn’t known whether this ocean contained the carbon-related materials that are needed for life.

The new observations using Webb’s NIRSpec instrument found carbon dioxide on the planet’s surface, and the researchers believe that this came from the ocean beneath the icy crust. This supports the idea that there are carbon compounds in this ocean, which could mean it is habitable.

Webb’s NIRCam (Near Infrared Camera) captured this picture of the surface of Jupiter’s moon Europa. Webb identified carbon dioxide on the icy surface of Europa that likely originated in the moon’s subsurface ocean. This discovery has important implications for the potential habitability of Europa’s ocean. The moon appears mostly blue because it is brighter at shorter infrared wavelengths. The white features correspond with the chaos terrain Powys Regio (left) and Tara Regio (centre and right), which show enhanced carbon dioxide ice on the surface.
Webb’s NIRCam (Near Infrared Camera) captured this picture of the surface of Jupiter’s moon Europa. Webb identified carbon dioxide on the icy surface of Europa that likely originated in the moon’s subsurface ocean. This discovery has important implications for the potential habitability of Europa’s ocean. The moon appears mostly blue because it is brighter at shorter infrared wavelengths. The white features correspond with the chaotic terrain Powys Regio (left) and Tara Regio (center and right), which show enhanced carbon dioxide ice on the surface. [Image description: A blue-and-white sphere against a black background is somewhat reminiscent of the famous “Blue Marble” picture of Earth from space. With fuzzy, diffuse edges, this sphere features darker blue patches in most of the northern hemisphere facing the viewer. One, large, crescent-shaped, white patch extends along the left side of the southern hemisphere facing the viewer, and a larger, blobby, white patch covers the middle latitudes of the right side of the southern hemisphere. Lighter blue regions border these white patches in the south.] NASA, ESA, CSA, G. Villanueva (NASA/GSFC), S. Trumbo (Cornell Univ.), A. Pagan (STScI)
“On Earth, life likes chemical diversity — the more diversity, the better. We’re carbon-based life. Understanding the chemistry of Europa’s ocean will help us determine whether it’s hostile to life as we know it, or whether it might be a good place for life,” said one of the researchers, Geronimo Villanueva of NASA’s Goddard Space Flight Center, in a statement.

The researchers considered whether the carbon dioxide they observed could have come from another source other than the subsurface ocean, such as being carried by a meteorite that struck the moon. However, carbon dioxide is unstable on the moon’s surface which implies that it must have arrived there relatively recently. The detection was also made in a particular region of the moon where there is younger terrain, so it is unlikely that the source could have been an ancient meteorite impact.

“We now think that we have observational evidence that the carbon we see on Europa’s surface came from the ocean. That’s not a trivial thing. Carbon is a biologically essential element,” said fellow researcher Samantha Trumbo of Cornell University.

Finding carbon molecules is exciting, but it is a long way from confirming that Europa is habitable. For more information, we’ll need in-depth observations like those that will be collected by the JUICE and upcoming Europa Clipper missions. Eventually, the ideal scenario would be to send a mission that can pass through the surface and probe the ocean itself.

“Scientists are debating to what extent Europa’s ocean connects to its surface. I think that question has been a big driver of Europa exploration,” said Villanueva. “This suggests that we may be able to learn some basic things about the ocean’s composition even before we drill through the ice to get the full picture.”

The research is published in two papers in the journal Science.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Well-known star turns out to be not one star, but twins
This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles.

This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles. U.S. NSF/NSF NRAO/B. Saxton

There are some regions and objects that become favorite targets for astronomers -- often because they are nearby (and so easier to observe) and because they are a well-known example of an object like a stellar nursery or a black hole. But occasionally, even these well-known objects turn out to be hiding surprises. This was the case recently, when observations from the James Webb Space Telescope revealed that a particular star, WL 20S, in the frequently observed WL20 region, turned out not to be a single star at all, but actually a pair.

Read more
James Webb discovers the most distant galaxy ever observed
JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang.

JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Credit: NASA, ESA, CSA, STScI, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), P. Cargile (CfA). NASA

Researchers using the James Webb Space Telescope have discovered the most distant known galaxy to date, one that is so far away that it existed just a few hundred million years after the Big Bang. Since Webb began its science operations in 2022, astronomers have used it to look for very distant, very ancient galaxies and have been surprised by what they found. Not only have they found many of these distant galaxies, but the galaxies are also brighter and more massive than they expected -- suggesting that galaxies evolved into large sizes faster than anyone imagined.

Read more
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more