Skip to main content

James Webb Space Telescope completes final testing ahead of launch

Finally, the big day approaches: The James Webb Space Telescope has completed its final tests and is now being prepared for its journey to its launch site. The next-generation telescope will be the successor to the venerable old Hubble Space Telescope, as well as taking over duties from the now-retired Spitzer Space Telescope.

The final round of testing includes a series of tests to ensure that the telescope will operate in space as planned. This is complex for several reasons — firstly, that the technology is cutting-edge and has to survive the extreme conditions of launch, and secondly, that the telescope needs to be folded up to fit into a rocket for launch and then unfurl itself once it is in orbit.

The James Webb telescope fully assembled and folded as it will be for launch.
Fully assembled and fully tested, the NASA/ESA/CSA James Webb Space Telescope has completed its primary testing regimen and is soon preparing for shipment to its launch site at Europe’s Spaceport in French Guiana. In this photo, Webb is folded as it will be for launch. NASA/Chris Gunn

With the tests complete and engineers confident that Webb is ready for launch, it will now be packed up and shipped to its launch site in Kourou, French Guiana.

“NASA’s James Webb Space Telescope has reached a major turning point on its path toward launch with the completion of final observatory integration and testing,” said Gregory L. Robinson, Webb’s program director in a statement. “We have a tremendously dedicated workforce who brought us to the finish line, and we are very excited to see that Webb is ready for launch and will soon be on that science journey.”

With its more powerful hardware, Webb will be able to collect more data and do new science compared to the older Hubble. For example, it will be able to see whether a distant exoplanet has an atmosphere or not and even what that atmosphere is composed of — something which is very difficult to do with currently available telescopes. The bodies organizing the launch of Webb, NASA, the European Space Agency (ESA), and the Canadian Space Agency (CSA), have already laid out plans for what Webb will study in its first year.

For the team who have worked on Webb so far, the launch date, which is set for late November or early December this year, will be a major milestone both personally and professionally. “To me, launching Webb will be a significant life event – I’ll be elated of course when this is successful, but it will also be a time of deep personal introspection. Twenty years of my life will all come down to that moment,” said Mark Voyton, Webb observatory integration and test manager at NASA’s Goddard Space Flight Center.

“We’ve come a long way and worked through so much together to prepare our observatory for flight. The telescope’s journey is only just beginning, but for those of us on the ground who built it, our time will soon come to an end, and we will have our opportunity to rest, knowing we put everything on the line to make sure our observatory works. The bonds we formed with each other along the way will last far into the future.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb snaps an image of the famous and beautiful Crab Nebula
NASA’s James Webb Space Telescope has gazed at the Crab Nebula in the search for answers about the supernova remnant’s origins. Webb’s NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) have revealed new details in infrared light.

Located 6,500 light-years away, the Crab Nebula is famous among astronomers for its elaborate and beautiful structure. A new image from the James Webb Space Telescope shows off the gorgeous nebula as seen in the infrared wavelength, highlighting the filaments of dust that create its cage-like shape.

The nebula is a supernova remnant, the result of a massive star that exploded at the end of its life centuries ago. The supernova was observed on Earth in 1054 CE, and since then astronomers have watched the nebula that resulted from that explosion grow and change.

Read more
James Webb observes merging stars creating heavy elements
This image from Webb’s NIRCam (Near-Infrared Camera) instrument highlights GRB 230307A’s kilonova and its former home galaxy among their local environment of other galaxies and foreground stars. The neutron stars were kicked out of their home galaxy and travelled the distance of about 120,000 light-years, approximately the diameter of the Milky Way galaxy, before finally merging several hundred million years later.

In its earliest stages, the universe was composed mostly of hydrogen and helium. All of the other, heavier elements that make up the universe around us today were created over time, and it is thought that they were created primarily within stars. Stars create heavy elements within them in the process of fusion, and when these stars reach the ends of their lives they may explode in supernovas, spreading these elements in the environment around them.

That's how heavier elements like those up to iron are created. But for the heaviest elements, the process is thought to be different. These are created not within stellar cores, but in extreme environments such as the merging of stars, when massive forces create exceedingly dense environments that forge new elements.

Read more
Researchers discover a 320-mph jet stream around Jupiter’s equator
This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In this image, brightness indicates high altitude. The numerous bright white "spots" and "streaks" are likely very high-altitude cloud tops of condensed convective storms. Auroras, appearing in red in this image, extend to higher altitudes above both the northern and southern poles of the planet. By contrast, dark ribbons north of the equatorial region have little cloud cover. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks.

The James Webb Space Telescope might be best known for its study of extremely distant galaxies, but it is also used for research on targets closer to home, like planets within our solar system. Last year, the telescope captured a stunning image of Jupiter as seen in the infrared wavelength, and now scientists who have been working on this data have published some of their findings about the planet -- including a brand-new feature that they identified in its atmosphere.

This image of Jupiter from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) shows stunning details of the majestic planet in infrared light. In Webb’s images of Jupiter from July 2022, researchers recently discovered a narrow jet stream traveling 320 miles per hour (515 kilometers per hour) sitting over Jupiter’s equator above the main cloud decks. NASA, ESA, CSA, STScI, Ricardo Hueso (UPV), Imke de Pater (UC Berkeley), Thierry Fouchet (Observatory of Paris), Leigh Fletcher (University of Leicester), Michael H. Wong (UC Berkeley), Joseph DePasquale (STScI)

Read more