Skip to main content

Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects — but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it’s possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

The visualization uses data from the Cosmic Evolution Early Release Science (CEERS) survey, which searches large areas of the sky to look for some of the earliest galaxies. That means it needs images of large regions, but it also needs data on each individual galaxy to look for the large redshifts which indicate a very distant (and therefore very old) galaxy. The visualization shows a small part of a region called the Extended Groth Strip, which contains over 100,000 galaxies in total.

A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations. Visualization Frank Summers (STScI), Greg Bacon (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI) Science Steve Finkelstein (UT Austin), Rebecca Larson (RIT), Micaela Bagley (UT Austin)

The galaxy that the visualization zooms in toward is called Maisie’s Galaxy, which is from just 390 million years after the big bang and was named after the daughter of one of the researchers.

Recommended Videos

“This observatory just opens up this entire period of time for us to study,” said one of the survey’s investigators, Rebecca Larson of the Rochester Institute of Technology, in a statement. “We couldn’t study galaxies like Maisie’s before because we couldn’t see them. Now, not only are we able to find them in our images, we’re able to find out what they’re made of and if they differ from the galaxies that we see close by.”

Please enable Javascript to view this content

One open question is about the formation of early galaxies, as research with Webb has shown that early galaxies are bigger and brighter than expected.

“This observation exceeded our expectations. The sheer number of galaxies that we’re finding in the early universe is at the upper end of all predictions,” said researcher Steven Finkelstein of the University of Texas at Austin.

Future research could help address these open questions, Finkelstein said: “Are these galaxies forming more stars than expected? Are the stars they’re making more massive than we expect? These data have given us the information to ask these questions. Now, we need more data to get those answers.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
‘That’s weird’: This galaxy could help astronomers understand the earliest stars
The newly-discovered GS-NDG-9422 galaxy appears as a faint blur in this James Webb Space Telescope NIRCam (Near-Infrared Camera) image. It could help astronomers better understand galaxy evolution in the early Universe.

Astronomers using the James Webb Space Telescope have spotted a weird galaxy that originated just a billion years after the Big Bang. Its strange properties are helping researchers to piece together how early galaxies formed, and to inch closer to one of astronomy's holy grail discoveries: the very earliest stars.

The researchers used Webb's instruments to look at the light coming from the GS-NDG-9422 galaxy across different wavelengths, called a spectrum, and made some puzzling findings.

Read more
James Webb image shows two galaxies in the process of colliding
This composite image of Arp 107, created with data from the James Webb Space Telescope’s NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument), reveals a wealth of information about the star formation taking place in these two galaxies and how they collided hundreds of million years ago. The near-infrared data, shown in white, show older stars, which shine brightly in both galaxies, as well as the tenuous gas bridge that runs between them. The vibrant background galaxies are also brightly illuminated at these wavelengths.

A new image from the James Webb Space Telescope shows one of the universe's most dramatic events: the colliding of two galaxies. The pair, known as Arp 107, are located located 465 million light-years away and have been pulled into strange shapes by the gravitational forces of the interaction, but this isn't a purely destructive process. The collision is also creating new stars as young stars are born in swirling clouds of dust and gas.

The image above is a composite, bringing together data from Webb's NIRCam (Near-InfraRed Camera) and MIRI (Mid-InfraRed Instrument). These two instruments operate in different parts of the infrared, so they can pick up on different processes. The data collected in the near-infrared range is seen in white, highlighting older stars and the band of gas running between the two galaxies. The mid-infrared data is shown in orange and red, highlighting busy regions of star formation, with bright young stars putting out large amounts of radiation.

Read more
James Webb trains its sights on the Extreme Outer Galaxy
The NASA/ESA/CSA James Webb Space Telescope has observed the very outskirts of our Milky Way galaxy. Known as the Extreme Outer Galaxy, this region is located more than 58 000 light-years from the Galactic centre.

A gorgeous new image from the James Webb Space Telescope shows a bustling region of star formation at the distant edge of the Milky Way. Called, dramatically enough, the Extreme Outer Galaxy, this region is located 58,000 light-years away from the center of the galaxy, which is more than twice the distance from the center than Earth is.

Scientists were able to use Webb's NIRCam (Near-Infrared Camera) and MIRI (Mid-Infrared Instrument) instruments to capture the region in sparkling detail, showing molecular clouds called Digel Clouds 1 and 2 containing clumps of hydrogen, which enables the formation of new stars.

Read more