Skip to main content

Zoom into stunning James Webb image to see a galaxy formed 13.4 billion years ago

One of the amazing things about the James Webb Space Telescope is the level of detail it is able to capture of very distant objects — but it can be hard to picture what that means when the distances being considered are so large. Now, a new visualization gives a feel of just how detailed the data from the telescope is, by showing how it’s possible to start with a stunning view of thousands of galaxies and zoom closer and closer in until you reach just one.

CEERS: Flight to Maisie's Galaxy

The visualization uses data from the Cosmic Evolution Early Release Science (CEERS) survey, which searches large areas of the sky to look for some of the earliest galaxies. That means it needs images of large regions, but it also needs data on each individual galaxy to look for the large redshifts which indicate a very distant (and therefore very old) galaxy. The visualization shows a small part of a region called the Extended Groth Strip, which contains over 100,000 galaxies in total.

A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations.
A section of a James Webb image showing a small part of the Extended Groth Strip, located between the Ursa Major and Boötes constellations. Visualization Frank Summers (STScI), Greg Bacon (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI) Science Steve Finkelstein (UT Austin), Rebecca Larson (RIT), Micaela Bagley (UT Austin)

The galaxy that the visualization zooms in toward is called Maisie’s Galaxy, which is from just 390 million years after the big bang and was named after the daughter of one of the researchers.

“This observatory just opens up this entire period of time for us to study,” said one of the survey’s investigators, Rebecca Larson of the Rochester Institute of Technology, in a statement. “We couldn’t study galaxies like Maisie’s before because we couldn’t see them. Now, not only are we able to find them in our images, we’re able to find out what they’re made of and if they differ from the galaxies that we see close by.”

One open question is about the formation of early galaxies, as research with Webb has shown that early galaxies are bigger and brighter than expected.

“This observation exceeded our expectations. The sheer number of galaxies that we’re finding in the early universe is at the upper end of all predictions,” said researcher Steven Finkelstein of the University of Texas at Austin.

Future research could help address these open questions, Finkelstein said: “Are these galaxies forming more stars than expected? Are the stars they’re making more massive than we expect? These data have given us the information to ask these questions. Now, we need more data to get those answers.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Scientists explain cosmic ‘question mark’ spotted by Webb space telescope
The shape of a question mark captured by the James Webb Space Telescope.

Considering the myriad of unknowns that still exist for scientists exploring the vastness of the universe, the recent discovery in deep space of what seems to be a giant question mark feels highly appropriate.

Captured by the powerful James Webb Space Telescope, the bright, distinctive object clearly bears the shape of a question mark, leaving some stargazers wondering if the cosmos is teasing us, or perhaps motivating us to keep on searching the depths of space for the secrets that it may reveal.

Read more
James Webb telescope captures the gorgeous Ring Nebula in stunning detail
JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).

A new image from the James Webb Space Telescope shows the stunning and distinctive Ring Nebula -- a gorgeous structure of dust and gas located in the constellation of Lyra. This nebula is a favorite among sky watchers as it faces toward Earth so we can see its beautiful structure, and because it is visible throughout the summer from the Northern Hemisphere. It is different from the Southern Ring nebula, which Webb has also imaged, but both are a type of object called a planetary nebula.

Located just 2,600 light-years away, the Ring Nebula is a structure of dust and gas that was first observed in the 1770s, when it was thought to be something like a planet. With advances in technology, astronomers realized it was not a planet, but rather a cloud of dust and gas, and thanks to highly detailed observations by space telescopes like Hubble and Webb, scientists have been able to see more of its complex structure. The nebula isn't a simple sphere or blob, but is rather a central, football-shaped structure surrounded by rings of different material.

Read more
See how James Webb instruments work together to create stunning views of space
The irregular galaxy NGC 6822.

A series of new images from the James Webb Space Telescope shows the dusty, irregular galaxy NGC 6822 -- and the different views captured by various Webb instruments.

Located relatively close by at 1.5 million light-years from Earth, this galaxy is notable for its low metallicity. Confusingly, when astronomers say metallicity they do not mean the amount of metals present in a galaxy, but rather the amount of all heavy elements -- i.e., everything which isn't hydrogen or helium. This factor is important because the very earliest galaxies in the universe were made up almost entirely of hydrogen and helium, meaning they had low metallicity, and the heavier elements were created over time in the heart of stars and were then distributed through the universe when some of those stars went supernova.

Read more