Engineers for James Webb have stacked its 18 images into one

The work to get the James Webb Space Telescope ready to collect science data is still underway so that the telescope will be ready to share its first beautiful image of space this summer. The long and delicate process of aligning the telescope’s primary and secondary mirrors continues, but recently engineers reached an important milestone when they completed the image stacking step.

Last week, engineers shared an image array showing 18 points of light. These were actually 18 images of the same star, bright star HD 84406 being used for the alignment process, which represent the 18 segments that make up the primary mirror. Each segment reflected the star, and the overall shape corresponded to the overall hexagonal shape of the mirror. The next step, called segment alignment, was to make small adjustments to each of the mirror segments and also adjust the secondary mirror so that the 18 points of light were sharper. NASA engineers shared the new image in a blog post this week.

This hexagonal image array captured by the NIRCam instrument shows the progress made during the Segment Alignment phase, further aligning Webb’s 18 primary mirror segments and secondary mirror using precise movements commanded from the ground. NASA/STScI

Once that was done, the team could move on to the process of image stacking, in which the 18 points were layered on top of each other to produce one single point of light. This step means that the mirror is now operating as one large mirror rather than 18 small mirrors, but it doesn’t mean that adjustments are complete. The team still needs to make small adjustments in a phase called coarse phasing, in which different pairs of segments will be matched up to correct for tiny differences between the segments such as variations in their heights.

During this phase of alignment known as Image Stacking, individual segment images are moved so they fall precisely at the center of the field to produce one unified image instead of 18. In this image, all 18 segments are on top of each other. After future alignment steps, the image will be even sharper. NASA/STScI

“We still have work to do, but we are increasingly pleased with the results we’re seeing,” said Lee Feinberg, optical telescope element manager for Webb at NASA’s Goddard Space Flight Center, in the blog post. “Years of planning and testing are paying dividends, and the team could not be more excited to see what the next few weeks and months bring.”

Editors' Recommendations

Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
See what James Webb and Hubble are observing right now with this tool

If you're looking for a relaxing way to peruse the fascinating sights of space on your lunch break, then a newly updated tool from NASA has you covered. The Space Telescope Live tools show the current targets of the James Webb Space Telescope and the Hubble Space Telescope, letting you browse the cosmos from the perspective of two of the hardest-working telescopes out there.

You can visit the web-based tools at WebbTelescope for the James Webb Space Telescope and HubbleSite for the Hubble Space Telescope. Clicking on a link will bring you to a portal showing the current and past observations of the telescope and a ton of detail about the observations.

Read more
This famous supernova remnant is hiding a secret

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more