Skip to main content

James Webb’s mirrors are almost, but not quite, cooled

NASA’s James Webb Space Telescope is nearing completion of the seventh and final step in its alignment process. With its MIRI instrument now cooled to its operating temperature, the telescope is approaching its final, chilly overall temperature as it mirrors cool as well.

The James Webb Space Telescope.
Northrup Grumman/ESA/Hubble

“Now that the instruments are at their operating temperatures, the telescope mirrors will also continue cooling down to their final temperatures, but they are not quite there yet,” writes Jonathan Gardner, Webb deputy senior project scientist at NASA’s Goddard Space Flight Center. “The primary mirror segments and the secondary mirror are made of beryllium (coated with gold). At cryogenic temperatures, beryllium has a long thermal time constant, which means that it takes a long time to cool or to heat up. The primary mirror segments are still cooling, very slowly.”

One of the problems that designers of space missions need to address is that most materials change shape as they cool. If the mirror segments were made of glass, for example, they would warp as their temperatures changed, meaning the careful work of aligning the mirror would be lost. That’s why the mirror is made of beryllium, which has a property called low thermal expansion, meaning it changes shape very little when heated. That means that even as the primary mirror segments cool, they don’t affect the process of aligning the telescope.

As well as the 18 segments of the primary mirror, which currently vary in temperature between 34.4 kelvins to 54.5 kelvins, there is also the secondary mirror to consider. This small, round mirror sits on the end of a long boom arm and is currently at a cooler 29.4 kelvins due to being located further away from the heat sources.

The mirror segments are now cool enough, at below 55 kelvins, that they won’t prevent MIRI from taking science readings. However, the team hopes that they will cool further, by 0.5 to 2 kelvins, which would allow MIRI to take even more accurate readings. The exact temperature which they reach is related to the way that the telescope and its huge sunshield are pointing at the sun. The angle at which the telescope is relative to the sun depends on the target that it is looking at, and this angle changes the telescope’s temperature over time.

When Webb begins science operations this summer, it is expected that its average temperature will drop a bit more as the direction in which it points is changed.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb telescope captures the gorgeous Ring Nebula in stunning detail
JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).

A new image from the James Webb Space Telescope shows the stunning and distinctive Ring Nebula -- a gorgeous structure of dust and gas located in the constellation of Lyra. This nebula is a favorite among sky watchers as it faces toward Earth so we can see its beautiful structure, and because it is visible throughout the summer from the Northern Hemisphere. It is different from the Southern Ring nebula, which Webb has also imaged, but both are a type of object called a planetary nebula.

Located just 2,600 light-years away, the Ring Nebula is a structure of dust and gas that was first observed in the 1770s, when it was thought to be something like a planet. With advances in technology, astronomers realized it was not a planet, but rather a cloud of dust and gas, and thanks to highly detailed observations by space telescopes like Hubble and Webb, scientists have been able to see more of its complex structure. The nebula isn't a simple sphere or blob, but is rather a central, football-shaped structure surrounded by rings of different material.

Read more
See how James Webb instruments work together to create stunning views of space
The irregular galaxy NGC 6822.

A series of new images from the James Webb Space Telescope shows the dusty, irregular galaxy NGC 6822 -- and the different views captured by various Webb instruments.

Located relatively close by at 1.5 million light-years from Earth, this galaxy is notable for its low metallicity. Confusingly, when astronomers say metallicity they do not mean the amount of metals present in a galaxy, but rather the amount of all heavy elements -- i.e., everything which isn't hydrogen or helium. This factor is important because the very earliest galaxies in the universe were made up almost entirely of hydrogen and helium, meaning they had low metallicity, and the heavier elements were created over time in the heart of stars and were then distributed through the universe when some of those stars went supernova.

Read more
James Webb image shows the majesty of the most massive known galaxy cluster
Webb’s infrared image of the galaxy cluster El Gordo (“the Fat One”) reveals hundreds of galaxies, some never before seen at this level of detail. El Gordo acts as a gravitational lens, distorting and magnifying the light from distant background galaxies. Two of the most prominent features in the image include the Thin One, located just below and left of the image center, and the Fishhook, a red swoosh at upper right. Both are lensed background galaxies.

A recent image from the James Webb Space Telescope shows the most massive galaxy cluster we know of -- one so large that it is nicknamed El Gordo, or the fat one. Thought to have a mass of over 2 quadrillion times the mass of the sun, the cluster is located 7 billion light-years away and hosts hundreds of galaxies that are gravitationally bound together.

The image was taken using Webb's NIRCam instrument, which was able to capture the most detailed look yet at this enormous cluster and the many galaxies within it.

Read more