Skip to main content

James Webb’s mirrors are almost, but not quite, cooled

NASA’s James Webb Space Telescope is nearing completion of the seventh and final step in its alignment process. With its MIRI instrument now cooled to its operating temperature, the telescope is approaching its final, chilly overall temperature as it mirrors cool as well.

The James Webb Space Telescope.
Northrup Grumman/ESA/Hubble

“Now that the instruments are at their operating temperatures, the telescope mirrors will also continue cooling down to their final temperatures, but they are not quite there yet,” writes Jonathan Gardner, Webb deputy senior project scientist at NASA’s Goddard Space Flight Center. “The primary mirror segments and the secondary mirror are made of beryllium (coated with gold). At cryogenic temperatures, beryllium has a long thermal time constant, which means that it takes a long time to cool or to heat up. The primary mirror segments are still cooling, very slowly.”

One of the problems that designers of space missions need to address is that most materials change shape as they cool. If the mirror segments were made of glass, for example, they would warp as their temperatures changed, meaning the careful work of aligning the mirror would be lost. That’s why the mirror is made of beryllium, which has a property called low thermal expansion, meaning it changes shape very little when heated. That means that even as the primary mirror segments cool, they don’t affect the process of aligning the telescope.

As well as the 18 segments of the primary mirror, which currently vary in temperature between 34.4 kelvins to 54.5 kelvins, there is also the secondary mirror to consider. This small, round mirror sits on the end of a long boom arm and is currently at a cooler 29.4 kelvins due to being located further away from the heat sources.

The mirror segments are now cool enough, at below 55 kelvins, that they won’t prevent MIRI from taking science readings. However, the team hopes that they will cool further, by 0.5 to 2 kelvins, which would allow MIRI to take even more accurate readings. The exact temperature which they reach is related to the way that the telescope and its huge sunshield are pointing at the sun. The angle at which the telescope is relative to the sun depends on the target that it is looking at, and this angle changes the telescope’s temperature over time.

When Webb begins science operations this summer, it is expected that its average temperature will drop a bit more as the direction in which it points is changed.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Well-known star turns out to be not one star, but twins
This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles.

This artist’s concept shows two young stars nearing the end of their formation. Encircling the stars are disks of leftover gas and dust from which planets may form. Jets of gas shoot away from the stars’ north and south poles. U.S. NSF/NSF NRAO/B. Saxton

There are some regions and objects that become favorite targets for astronomers -- often because they are nearby (and so easier to observe) and because they are a well-known example of an object like a stellar nursery or a black hole. But occasionally, even these well-known objects turn out to be hiding surprises. This was the case recently, when observations from the James Webb Space Telescope revealed that a particular star, WL 20S, in the frequently observed WL20 region, turned out not to be a single star at all, but actually a pair.

Read more
James Webb discovers the most distant galaxy ever observed
JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang.

JADES (NIRCam Image with Pullout). The NIRCam data was used to determine which galaxies to study further with spectroscopic observations. One such galaxy, JADES-GS-z14-0 (shown in the pullout), was determined to be at a redshift of 14.32 (+0.08/-0.20), making it the current record-holder for the most distant known galaxy. This corresponds to a time less than 300 million years after the big bang. Credit: NASA, ESA, CSA, STScI, B. Robertson (UC Santa Cruz), B. Johnson (CfA), S. Tacchella (Cambridge), P. Cargile (CfA). NASA

Researchers using the James Webb Space Telescope have discovered the most distant known galaxy to date, one that is so far away that it existed just a few hundred million years after the Big Bang. Since Webb began its science operations in 2022, astronomers have used it to look for very distant, very ancient galaxies and have been surprised by what they found. Not only have they found many of these distant galaxies, but the galaxies are also brighter and more massive than they expected -- suggesting that galaxies evolved into large sizes faster than anyone imagined.

Read more
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more