Skip to main content

James Webb Telescope eyes exoplanet with oceans of lava

The James Webb Space Telescope is about to start peering into deep space in one of the most highly anticipated missions of recent years.

Five months after launch, and following a million-mile voyage to a spot that put it in orbit around our sun, the most powerful space telescope ever built is currently performing final calibrations of its onboard scientific instruments. Then, in just a few weeks’ time, it will begin the exciting work of trying to unlock the mysteries of our universe.

This week, NASA disclosed that the James Webb Space Telescope team has already identified two celestial bodies that it wants to explore with the space-based observatory: The lava-covered 55 Cancri e and the airless LHS 3844 b.

Both of these exoplanets (a planet outside our solar system) are classified as “super-Earths” for their size and rocky composition. The Webb team will train the telescope’s high-precision spectrographs on both in the hope of finding out more about the “geologic diversity of planets across the galaxy, and the evolution of rocky planets like Earth,” NASA said.

55 Cancri e

55 Cancri e is a mere 1.5 million miles from its sun (we’re 93 million miles from ours) and therefore features surface temperatures far above the melting point of typical rock-forming minerals. It means that parts of its surface are likely to be covered in oceans of lava.

The Webb team is keen to find out if 55 Cancri e is tidally locked, resulting in one side always facing its star. Such a state would be usual for planets that orbit this close to a star, but earlier observations carried out by NASA’s Spitzer Space Telescope suggest the hottest part of the planet is away from the area that directly faces the star and that the heat on the day side varies.

This has left scientists wondering if 55 Cancri e has a dynamic atmosphere that shifts heat around. It’s a question that Webb’s Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI) should be able to answer by capturing the thermal emission spectrum of the day side of the planet.

Alternatively, it’s also possible that the planet is not tidally locked and is actually rotating. In this case, the surface would “heat up, melt, and even vaporize during the day, forming a very thin atmosphere that Webb could detect,” NASA said, adding that, in the evening, the vapor would then cool and condense to form “droplets of lava that would rain back to the surface, turning solid again as night falls.” Again, the team plans to use Webb’s NIRCam to determine if this is the case.

LHS 3844 b

The much smaller and cooler LHS 3844 b offers Webb scientists a chance to closely analyze the solid rock on an exoplanet’s surface. Different types of rock have different spectra, so the Webb team plans to use MIRI to learn more about the planet’s composition.

MIRI will capture the thermal emission spectrum of the day side of LHS 3844 b and compare it to spectra of known rocks, like basalt and granite, to determine its composition, NASA said.

Webb’s observations of the two exoplanets are expected to help scientists in much broader ways. “They will give us fantastic new perspectives on Earth-like planets in general, helping us learn what the early Earth might have been like when it was hot like these planets are today,” said Laura Kreidberg of the Max Planck Institute for Astronomy.

The James Webb Space Telescope mission is also aiming to track down the first galaxies formed after the Big Bang, find out how galaxies evolved from formation to now, and measure the physical and chemical properties of planetary systems — among other goals.

Editors' Recommendations

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more
Tidally locked exoplanets could be habitable in the ‘terminator zone’
Some exoplanets have one side permanently facing their star while the other side is in perpetual darkness. The ring-shaped border between these permanent day and night regions is called a “terminator zone.” In a new paper in The Astrophysical Journal, physics and astronomy researchers at UC Irvine say this area has the potential to support extraterrestrial life.

Exoplanets can have all sorts of strange environments, and one feature which is relatively common to find among exoplanets but doesn't exist among planets in our solar system is tidal locking. This is where one side of the planet always faces its star and the other side always faces out into space, so one side gets incredibly hot while the other side is freezing cold. That doesn't sound like a comfortable environment for life, but recent research shows that it is possible that these exoplanets could be habitable in the narrow band which separates the two sides.

Known as the "terminator zone," this is the ring around a planet between the hot side, called the dayside, and the cold side, called the nightside. This zone separates two vastly different climates. “This is a planet where the dayside can be scorching hot, well beyond habitability, and the night side is going to be freezing, potentially covered in ice. You could have large glaciers on the night side,” explained the lead researcher, Ana Lobo of the University of California, Irvine, in a statement.

Read more
Astronomers share early images from James Webb’s galaxy survey
Images of four example galaxies selected from the first epoch of COSMOS-Web NIRCam observations, highlighting the range of structures that can be seen. In the upper left is a barred spiral galaxy; in the upper right is an example of a gravitational lens, where the mass of the central galaxy is causing the light from a distant galaxy to be stretched into arcs; on the lower left is nearby galaxy displaying shells of material, suggesting it merged with another galaxy in its past; on the lower right is a barred spiral galaxy with several clumps of active star formation.

One of the major aims of the James Webb Space Telescope is to observe some of the earliest galaxies in the universe, and to do that it needs to be able to see extremely distant objects. But looking at a particular very old galaxy in detail is only half of the problem. To truly understand the earliest stages of the universe, astronomers also need to see how these very old galaxies are distributed so they can understand the large-scale structure of the universe.

That's the aim of the COSMOS-Web program, which is using James Webb to survey a wide area of the sky and look for these rare, ancient galaxies. It aims to study up to 1 million galaxies during over 255 hours of observing time, using both Webb's near-infrared camera (NIRCam) and its mid-infrared instrument (MIRI) camera. While there is still plenty of observing left to do, the researchers in the COSMOS-Web program recently shared some of their first results.

Read more