Skip to main content

Aurorae light up the skies over Jupiter’s four largest moons

One of the Earth’s great natural wonders is the Northern Lights or aurora borealis; delicate waves of colors that appear in the sky over polar regions when energetic particles from the sun interact with Earth’s magnetic field. But Earth isn’t the only planet to experience aurorae, as the strong magnetic fields of planets like Jupiter and Saturn mean that aurorae are observed there as well.

Aurorae aren’t just limited to Jupiter though but are also present on four of its moons: Io, Europa, Ganymede, and Callisto. Astronomers recently used the High-Resolution Echelle Spectrometer (HIRES) instrument at the W. M. Keck Observatory in Hawai’i to observe the moons while they were in the shadow of Jupiter, allowing them to see the faint aurorae.

Artist’s rendition of oxygen, sodium, and potassium aurorae as Io enters Jupiter’s shadow.
Artist’s rendition of oxygen, sodium, and potassium aurorae as Io enters Jupiter’s shadow. Chris Faust

“These observations are tricky because in Jupiter’s shadow, the moons are nearly invisible,” said one of the lead researchers, Katherine de Kleer of Caltech, in a statement. “The light emitted by their faint aurorae is the only confirmation that we’ve even pointed the telescope at the right place.”

Recommended Videos

Different colors of aurorae are created by different elements, and the researchers were able to see some green aurorae created by oxygen similar to those we see on Earth. But at low concentrations, oxygen produces a red aurora, and as these moons have extremely thin atmospheres they show aurorae that are 15 times more red than green.

And on Io, which has plumes of sodium chloride and potassium chloride coming from its volcanoes, its aurorae can have a yellow-orange color.

“The brightness of the different colors of aurora tell us what these moons’ atmospheres are likely made up of,” said de Kleer. “We find that molecular oxygen, just like what we breathe here on Earth, is likely the main constituent of the icy moon atmospheres.”

As aurorae occur when particles from the sun interact with a magnetosphere, you might expect that a moon would need a magnetic field of its own to experience these phenomena. But three of the moons in question — other than Ganymede — don’t have their own magnetic fields. However, the magnetic field of Jupiter is so strong that its effects reach out to its moons.

The magnetic field of Jupiter is also titled, so the field on the moons varies as the planet rotates, and that means their aurorae change in brightness over time.

Another change that can happen to the aurorae is when the atmospheres warm or cool as they exit or enter the shadow of Jupiter, an effect which was seen on Io.

“Io’s sodium becomes very faint within 15 minutes of entering Jupiter’s shadow, but it takes several hours to recover after it emerges into sunlight,” said another of the lead researchers, Carl Schmidt of Boston University. “These new characteristics are really insightful for understanding Io’s atmospheric chemistry. It’s neat that eclipses by Jupiter offer a natural experiment to learn how sunlight affects its atmosphere.”

The research is published in two papers in The Planetary Science Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Stunning images of Jupiter’s moon Europa show it has a floating icy shell
Jupiter’s moon Europa was captured by the JunoCam instrument aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022. The images show the fractures, ridges, and bands that crisscross the moon’s surface.

This image of Jupiter’s moon Europa was captured by the JunoCam instrument aboard NASA’s Juno spacecraft during the mission’s close flyby on September 29, 2022. The image shows the fractures, ridges, and bands that crisscross the moon’s surface. Image data: NASA/JPL-Caltech/SwRI/MSSS. Image processing: Björn Jónsson (CC BY 3.0)

NASA's Juno mission is busy studying not only the planet of Jupiter, with its strange weather and strong magnetic field, but also several of its icy moons ,including the intriguing Europa. Often a top target of habitability research, Europa is exciting as a potential host for life because it is thought to have a liquid water ocean -- although this ocean is beneath an icy crust up to 15 miles thick. Juno has taken high-definition photos of Europa's surface, and scientists have recently analyzed this data to identify fractures and other features running across the icy shell.

Read more
See a flyby of Io, a hellish moon with lakes of lava and an otherworldly mountain
The JunoCam instrument on NASA’s Juno captured this view of Jupiter’s moon Io — with the first-ever image of its south polar region — during the spacecraft’s 60th flyby of Jupiter on April 9.

NASA's Juno mission is best known for the gorgeous images of Jupiter that it has taken since its launch in 2011 and arrival at Jupiter in 2016. But the spacecraft hasn't only investigated the planet -- it has also studied Jupiter's many moons, like the large Ganymede and the icy Europa. Recently, the spacecraft has been making close flybys of the Jovian moon Io, which is the most volcanically active body in the solar system. And it has observed some dramatic features there, like a lake of lava and a large mountain.

Even though Jupiter (and Io) are both far from the sun, and therefore receive little heat from sunlight, Io still has high internal temperatures. That's because Jupiter is so large that its gravitational pull acts on Io and creates friction, heating it up in a process called tidal heating. Though the surface of the moon is cold, at below minus 200 degrees Fahrenheit (minus 130 degrees Celsius), the volcanoes spewing out material from the planet's hot interior can reach temperatures of thousands of degrees Fahrenheit.

Read more
Jupiter’s icy moon Europa may be light on oxygen, lowering habitability hopes
This view of Jupiter’s icy moon Europa was captured by the JunoCam imager aboard NASA’s Juno spacecraft during the mission’s close flyby on Sept. 29, 2022.

When scientists look out into the solar system for places other than Earth that might be capable of hosting life, one of the leading locations of interest is Jupiter's moon Europa. Even though it is far from the sun and it appears on the surface to be icy and inhospitable, it has a liquid water ocean located beneath a thick icy crust, which could potentially allow for life to survive there. However, new research pours some cold water on this possibility, as it seems that the moon produces less oxygen than previously thought.

Researchers used data from the Juno mission to Jupiter, which has also performed flybys of Europa, to see how much hydrogen was being released from the moon's surface. Measured using Juno's Jovian Auroral Distributions Experiment (JADE) instrument, this data can be used to estimate how much oxygen is being produced -- and it's thought to be just 26 pounds every second, compared to previous estimates of up to 2,000 pounds per second.

Read more