Skip to main content

James Webb researcher on how telescope will investigate exoplanet atmospheres

When the James Webb Space Telescope begins science operations this summer, it will be used to investigate a wide variety of astronomical objects, from supermassive black holes to distant galaxies. One of Webb’s big scientific goals is to learn more about exoplanets, or planets outside our solar system, and in particular to look at exoplanet atmospheres. It is extremely difficult to tell whether an exoplanet has an atmosphere or what that atmosphere might be composed of using current telescopes, but Webb’s sensitive instruments will be able to detect these atmospheres and learn more about distant planets — potentially even finding habitable worlds.

One of the researchers who will be using Webb to analyze exoplanet atmospheres, Knicole Colón, Webb’s deputy project scientist for exoplanet science, has shared more about this work in a recent NASA blog post:

“One specific exoplanet observation that will be done with Webb involves collecting observations over the course of a planet’s orbit to enable measurements of the atmospheric composition and dynamics,” Colón writes. “I am involved in a program to observe the gas giant HD 80606 b as part of Webb’s first year of observations. Because the orbit of HD 80606 b is extremely eccentric (non-circular) and long (111 days), the amount of energy received by the planet from its star ranges from approximately 1 to 950 times what Earth receives from the Sun! This results in extreme temperature variations, which are predicted to cause clouds to rapidly form and dissipate in the planet’s atmosphere on very short timescales.”

To learn more about these dramatic atmospheric variations, Colón’s team will use Webb’s Near InfraRed Spectrograph or NIRSpec instrument to analyze light coming from the planet to learn about its composition: “Our science team will probe these predicted cloud dynamics in real-time over the course of a continuous ~18 hour observation of HD 80606 b as it passes behind its star, using the NIRSpec instrument on Webb to measure thermal light from the planet’s atmosphere.”

As well as gas giants like HD 80606 b, in its first cycle of research Webb will also look at the atmospheres of Earth-like or terrestrial planets, examine hot rocky exoplanets covered in volcanoes, investigate the disks of matter from which planets form, and look at extreme worlds close to their host stars called hot Jupiters.

This builds on work done by current exoplanet-hunting telescopes like the Transiting Exoplanet Survey Satellite, or TESS, Colón writes: “With TESS and other surveys continuing to discover additional planets in our galaxy at a regular pace and Webb preparing to study the atmospheres of many of these newly discovered worlds, our exoplanet adventures are in many ways just beginning.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more
How to watch NASA launch its newest ocean and atmosphere observation satellite tonight
A SpaceX Falcon 9 rocket with NASA’s PACE (Plankton, Aerosol, Cloud, ocean Ecosystem) spacecraft encapsulated atop is raised to a vertical position at Space Launch Complex 40 at Cape Canaveral Space Force Station in Florida on Monday, Feb. 5, 2024. Liftoff of the PACE mission is set for no earlier than 1:33 a.m. EST on Tuesday, Feb. 6, 2024.

Although NASA is most often associated with sending missions out to observe space, the agency also has a large number of space missions that turn the other way to observe Earth. The newest mission to observe Earth's atmosphere and oceans, and to provide insight into how these interact with the changing climate, is set for launch early Eastern time on Tuesday, February 6 .

Launch of Mission to Study Earth's Atmosphere and Oceans (Official NASA Broadcast)

Read more