Skip to main content

NASA’s Webb telescope captures the majestic Tarantula Nebula

The most powerful space telescope ever built is continuing to send back dazzling images of the universe from its orbit a million miles from Earth.

The James Webb Space Telescope’s latest stunner shows the Tarantula Nebula, described by NASA as “a raucous region of star birth that resides 170,000 light-years away in the Large Magellanic Cloud, a small, satellite galaxy of our Milky Way.”

The Tarantula Nebula captured by the James Webb Space Telescope.
As per NASA: In this mosaic image stretching 340 light-years across, Webb’s Near-Infrared Camera (NIRCam) displays the Tarantula Nebula star-forming region in a new light, including tens of thousands of never-before-seen young stars that were previously shrouded in cosmic dust. The most active region appears to sparkle with massive young stars, appearing pale blue. NASA, ESA, CSA, STScI, Webb ERO Production Team

The Tarantula Nebula earned its name for the dusty filaments that appear in earlier images captured by other telescopes, and is a favorite of astronomers with a special interest in star formation, NASA said. This is because the nebula’s chemical composition and development are similar to the enormous star-forming regions observed at the universe’s so-called “cosmic noon,” a time when the cosmos was just a few billion years old and star formation was at its height.

Also known as 30 Doradus, the nebula’s cavity, which you can see at the center of the image, has been hollowed out by intense radiation from a cluster of huge young stars that appear in the image as blue dots of light.

“Only the densest surrounding areas of the nebula resist erosion by these stars’ powerful stellar winds, forming pillars that appear to point back toward the cluster,” NASA says.

There’s still much for astronomers to learn about how stars form, but Webb’s advanced infrared cameras are sending back new kinds of images that reveal events behind the thick clouds of stellar nurseries.

“Webb has already begun revealing a universe never seen before, and is only getting started on rewriting the stellar creation story,” NASA said.

The James Webb Space Telescope launched from the Kennedy Space Center in Florida toward the end of 2021 and is a joint mission involving NASA and its European and Canadian counterparts.

Since reaching its orbital position in deep space earlier in the summer, it’s been beaming back incredible imagery for astronomers to examine as they seek to learn more about the origins of the universe while also searching for planets like our own that could support life.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more