Skip to main content

Neptune as you’ve never seen it before, imaged by Webb telescope

The newly deployed James Webb Space Telescope has captured the clearest view of Neptune in decades.

The most powerful space telescope ever built, which launched at the end of 2021, used its infrared imaging capabilities to show the distant planet in a fresh light. Features include Neptune’s prominent narrow rings and fainter dust bands, which NASA says have not been detected since 1989 when Voyager 2 passed close by.

“It has been three decades since we last saw these faint, dusty rings, and this is the first time we’ve seen them in the infrared,” Heidi Hammel, a Neptune system expert and interdisciplinary scientist for Webb, said on NASA’s website.

Neptune is located in the outer solar system, 30 times further from the sun than Earth, and was discovered by astronomers in 1846. NASA says that Neptune’s vast distance from our sun means that high noon on the planet is “similar to a dim twilight on Earth.”

The planet’s usual blue appearance in images captured by Voyager and the Hubble Space Telescope is the result of the absorption of red and infrared light by Neptune’s methane atmosphere. But Webb’s Near-Infrared Camera (NIRCam) captures objects in the near-infrared range from 0.6 to 5 microns, so Neptune does not appear blue to Webb.

The image taken by the Webb telescope also shows seven of Neptune’s 14 known moons, including its largest, Triton. You can see them in the image below.

Neptune and some of its moons, captured by the James Webb Space Telescope.
NASA, ESA, CSA, STScI

“Covered in a frozen sheen of condensed nitrogen, Triton reflects an average of 70% of the sunlight that hits it,” NASA said of its bright appearance. “It far outshines Neptune in this image because the planet’s atmosphere is darkened by methane absorption at these near-infrared wavelengths.”

The space agency notes that Triton orbits Neptune in an unusual backward (retrograde) orbit, behavior that suggests it could once have been part of the Kuiper Belt — a band of rock, ice, comets, and dwarf planets in the outer solar system — before being gravitationally captured by Neptune.

The Webb team plans to use the space telescope to conduct further studies of Neptune in the coming year.

The Webb mission is the work of NASA, the European Space Agency, and the Canadian Space Agency, and launched in December 2021. The telescope is being used mainly to explore the depths of the universe for clues on how it all began, while at the same time searching for planets similar to our own that could support life. The team is also taking the opportunity to use the telescope’s powerful technology to image familiar planets closer to home, such as Neptune and Jupiter, showing them in ways that we’ve never seen them before.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb captures the edge of the beautiful Horsehead Nebula
The NASA/ESA/CSA James Webb Space Telescope has captured the sharpest infrared images to date of one of the most distinctive objects in our skies, the Horsehead Nebula. These observations show a part of the iconic nebula in a whole new light, capturing its complexity with unprecedented spatial resolution. Webb’s new images show part of the sky in the constellation Orion (The Hunter), in the western side of the Orion B molecular cloud. Rising from turbulent waves of dust and gas is the Horsehead Nebula, otherwise known as Barnard 33, which resides roughly 1300 light-years away.

A new image from the James Webb Space Telescope shows the sharpest infrared view to date of a portion of the famous Horsehead Nebula, an iconic cloud of dust and gas that's also known as Barnard 33 and is located around 1,300 light-years away.

The Horsehead Nebula is part of a large cloud of molecular gas called Orion B, which is a busy star-forming region where many young stars are being born. This nebula  formed from a collapsing cloud of material that is illuminated by a bright, hot star located nearby. The image shows the very top part of the nebula, catching the section that forms the "horse's mane."

Read more
James Webb images capture the galactic winds of newborn stars
A team of astronomers used the NASA/ESA/CSA James Webb Space Telescope to survey the starburst galaxy Messier 82 (M82), which is located 12 million light-years away in the constellation Ursa Major. M82 hosts a frenzy of star formation, sprouting new stars 10 times faster than the Milky Way galaxy. Webb’s infrared capabilities enabled scientists to peer through curtains of dust and gas that have historically obscured the star formation process. This image from Webb’s NIRCam (Near-Infrared Camera) instrument shows the centre of M82 with an unprecedented level of detail. With Webb’s resolution, astronomers can distinguish small, bright compact sources that are either individual stars or star clusters. Obtaining an accurate count of the stars and clusters that compose M82’s centre can help astronomers understand the different phases of star formation and the timelines for each stage.

A stunning new pair of images from the James Webb Space Telescope show a new view of a familiar galaxy. Messier 82 is a famous starburst galaxy, full of bright and active star formation, and scientists are using Webb to study how stars are being born in the busy conditions at the center of the galaxy.

Astronomers used Webb's NIRCam instrument to observe the galaxy, and by splitting the resulting data into shorter and longer wavelengths, you can see different features which are picked out in the bustling, active region where stars are forming.

Read more
The expansion rate of the universe still has scientists baffled
This image of NGC 5468, a galaxy located about 130 million light-years from Earth, combines data from the Hubble and James Webb space telescopes. This is the most distant galaxy in which Hubble has identified Cepheid variable stars. These are important milepost markers for measuring the expansion rate of the Universe. The distance calculated from Cepheids has been cross-correlated with a Type Ia supernova in the galaxy. Type Ia supernovae are so bright they are used to measure cosmic distances far beyond the range of the Cepheids, extending measurements of the Universe’s expansion rate deeper into space.

The question of how fast the universe is expanding continues to confound scientists. Although it might seem like a fairly straightforward issue, the reality is that it has been perplexing the best minds in physics and astronomy for decades -- and new research using the James Webb Space Telescope and the Hubble Space Telescope doesn't make the answer any clearer.

Scientists know that the universe is expanding over time, but what they can't agree on is the rate at which this is happening -- called the Hubble constant. There are two main methods used to estimate this constant: one that looks at how fast distant galaxies are moving away from us, and one that looks at leftover energy from the Big Bang called the cosmic microwave background. The trouble is, these two methods give different results.

Read more