Skip to main content

Neptune as you’ve never seen it before, imaged by Webb telescope

The newly deployed James Webb Space Telescope has captured the clearest view of Neptune in decades.

The most powerful space telescope ever built, which launched at the end of 2021, used its infrared imaging capabilities to show the distant planet in a fresh light. Features include Neptune’s prominent narrow rings and fainter dust bands, which NASA says have not been detected since 1989 when Voyager 2 passed close by.

Recommended Videos

“It has been three decades since we last saw these faint, dusty rings, and this is the first time we’ve seen them in the infrared,” Heidi Hammel, a Neptune system expert and interdisciplinary scientist for Webb, said on NASA’s website.

Please enable Javascript to view this content

Neptune is located in the outer solar system, 30 times further from the sun than Earth, and was discovered by astronomers in 1846. NASA says that Neptune’s vast distance from our sun means that high noon on the planet is “similar to a dim twilight on Earth.”

The planet’s usual blue appearance in images captured by Voyager and the Hubble Space Telescope is the result of the absorption of red and infrared light by Neptune’s methane atmosphere. But Webb’s Near-Infrared Camera (NIRCam) captures objects in the near-infrared range from 0.6 to 5 microns, so Neptune does not appear blue to Webb.

The image taken by the Webb telescope also shows seven of Neptune’s 14 known moons, including its largest, Triton. You can see them in the image below.

Neptune and some of its moons, captured by the James Webb Space Telescope.
NASA, ESA, CSA, STScI

“Covered in a frozen sheen of condensed nitrogen, Triton reflects an average of 70% of the sunlight that hits it,” NASA said of its bright appearance. “It far outshines Neptune in this image because the planet’s atmosphere is darkened by methane absorption at these near-infrared wavelengths.”

The space agency notes that Triton orbits Neptune in an unusual backward (retrograde) orbit, behavior that suggests it could once have been part of the Kuiper Belt — a band of rock, ice, comets, and dwarf planets in the outer solar system — before being gravitationally captured by Neptune.

The Webb team plans to use the space telescope to conduct further studies of Neptune in the coming year.

The Webb mission is the work of NASA, the European Space Agency, and the Canadian Space Agency, and launched in December 2021. The telescope is being used mainly to explore the depths of the universe for clues on how it all began, while at the same time searching for planets similar to our own that could support life. The team is also taking the opportunity to use the telescope’s powerful technology to image familiar planets closer to home, such as Neptune and Jupiter, showing them in ways that we’ve never seen them before.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
Astronaut’s photo shows Earth as you’ve never seen it before
Earth as seen from the space station.

NASA astronaut Don Pettit already has a long-held reputation for creating stunning space photography, and his latest effort will only bolster it.

Shared on social media on Thursday, the image (top) shows Earth as a blaze of streaking light, an effect created by using long and multiple exposures to capture cities at night across several continents.

Read more
Creepy cosmic eyes stare out from space in Webb and Hubble image
The gruesome palette of these galaxies is owed to a mix of mid-infrared light from the NASA/ESA/CSA James Webb Space Telescope, and visible and ultraviolet light from the NASA/ESA Hubble Space Telescope. The pair grazed one another millions of years ago. The smaller spiral on the left, catalogued as IC 2163, passed behind NGC 2207, the larger spiral galaxy at right. Both have increased star formation rates. Combined, they are estimated to form the equivalent of two dozen new stars that are the size of the Sun annually. Our Milky Way galaxy forms the equivalent of two or three new Sun-like stars per year. Both galaxies have hosted seven known supernovae, each of which may have cleared space in their arms, rearranging gas and dust that later cooled, and allowed many new stars to form. (Find these areas by looking for the bluest regions).

These sinister eyes gazing out from the depths of space star in a new Halloween-themed image, using data from both the Hubble Space Telescope and the James Webb Space Telescope. It shows a pair of galaxies, IC 2163 on the left and NGC 2207 on the right, which are creeping closer together and interacting to form a creepy-looking face.

The two galaxies aren't colliding directly into one another, as one is passing in front of the other, but they have passed close enough to light scrape by each other and leave indications. If you look closely at the galaxy on the left, you can see how its spiral arms have been pulled out into an elongated shape, likely because of its close pass to the gravity of the other nearby galaxy. The lines of bright red around the "eyes" are created by shock fronts, with material from each galaxy slamming together.

Read more
James Webb discovers a new type of exoplanet: an exotic ‘steam world’
An artist’s conception of the “steam world” GJ 9827 d, shown in the foreground in blue.

Our solar system has a wide variety of planet types, from tiny rocky Mercury to huge puffy gas giant Jupiter to distant ice giant Uranus. But beyond our own system, there are even more types of exoplanet out there, including water worlds covered in ocean and where life could potentially thrive. Now, researchers using the James Webb Space Telescope have identified a new and exotic type of planet called a steam world, which has an atmosphere almost entirely composed of water vapor.

The planet, called GJ 9827 d, was examined by the Hubble Space Telescope earlier this year and had researchers so intrigued that they wanted to go back for a closer look using Webb. They found that the planet, which is around twice the size of Earth, had a very different atmosphere from the typical hydrogen and helium that is usually seen. Instead, it was full of hot steam.

Read more