Skip to main content

Astronomers catch the destruction of a red supergiant star in real time

When very large stars run out of fuel and reach the end of their lives, they can explode in massive, dramatic events called supernovas. These explosions throw off enormous amounts of light and energy, but there’s much we still don’t know about how this process happens. Now, astronomers have observed a red supergiant star going supernova for the first time, catching a glimpse of the massive star’s final moments of life.

“This is a breakthrough in our understanding of what massive stars do moments before they die,” said Wynn Jacobson-Galán, lead author of the study, in a statement. “Direct detection of pre-supernova activity in a red supergiant star has never been observed before in an ordinary Type II supernova. For the first time, we watched a red supergiant star explode!”

An artist’s impression of a red supergiant star in the final year of its life emitting a tumultuous cloud of gas.
An artist’s impression of a red supergiant star in the final year of its life emitting a tumultuous cloud of gas. This suggests at least some of these stars undergo significant internal changes before going supernova. W. M. Keck Observatory/Adam Makarenko

The team observed the supernova SN 2020tlf using two telescopes in Hawai’i, Pan-STARRS, and the W. M. Keck Observatory. They were able to spot the red supergiant before the supernova occurred as it was giving off significant amounts of light as well as ejecting large amounts of gas. They observed the star for 120 days before it went supernova in fall 2020, and they saw a dense cloud of gas surrounding the star when it exploded.

Recommended Videos

“Keck was instrumental in providing direct evidence of a massive star transitioning into a supernova explosion,” said senior author Raffaella Margutti, an associate professor of astronomy at UC Berkeley. “It’s like watching a ticking time bomb. We’ve never confirmed such violent activity in a dying red supergiant star where we see it produce such a luminous emission, then collapse and combust, until now.”

The star which exploded was particularly large, at 10 times the mass of the sun, and was located 120 million light-years away in the galaxy NGC 5731. It is of particular interest to researchers as it was so active before exploding, while previously observed red supergiants have been relatively calm before going supernova.

“I am most excited by all of the new ‘unknowns’ that have been unlocked by this discovery,” said Jacobson-Galán. “Detecting more events like SN 2020tlf will dramatically impact how we define the final months of stellar evolution, uniting observers and theorists in the quest to solve the mystery of how massive stars spend the final moments of their lives.”

The results are published in The Astrophysical Journal.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble catches a baby star pulsating in a triple star system
This NASA Hubble Space Telescope image captures a triple-star star system.

This NASA Hubble Space Telescope image shows a triple-star star system. NASA, ESA, G. Duchene (Universite de Grenoble I); Image Processing: Gladys Kober (NASA/Catholic University of America)

A gorgeous new image from the Hubble Space Telescope shows a triple star system, where three stars are working in tandem to create a reflection nebula. The trio of stars are located 550 light-years away, and include one particular star, HP Tau, that is like a younger version of our sun and will eventually grow up to be a similar hydrogen-fueled star in millions of years' time.

Read more
Astronomers are figuring out what causes incredibly bright flashes in space
In an ejection that would have caused its rotation to slow, a magnetar is depicted losing material into space in this artist’s concept. The magnetar’s strong, twisted magnetic field lines (shown in green) can influence the flow of electrically charged material from the object, which is a type of neutron star.

Some of the oddest cosmic phenomena are short but tremendously powerful bursts of radio waves, which, in a fraction of a second, can give off as much energy as the sun does in a year. Known as fast radio bursts, these incredibly bright flashes of energy are thought to be related to dying stars called magnetars. Now, using two separate telescopes, astronomers have observed one of these events just a few minutes before and after it occurred, giving the best look yet at what causes these strange events.

In an ejection that would have caused its rotation to slow, a magnetar is depicted losing material into space in this artist’s concept. The magnetar’s strong, twisted magnetic field lines (shown in green) can influence the flow of electrically charged material from the object, which is a type of neutron star. NASA/JPL-Caltech

Read more
Scientists investigate star formation in the famous Whirlpool Galaxy
This illustration depicts the distribution of diazenylium molecule radiation (false colours) in the Whirlpool Galaxy, compared with an optical image. The reddish areas in the photograph represent luminous gas nebulae containing hot, massive stars traversing dark zones of gas and dust in the spiral arms. The presence of diazenylium in these dark regions suggests particularly cold and dense gas clouds.

Scientists are turning to the beautiful and famous Whirlpool Galaxy to look for areas where stars could eventually be born. By mapping out the presence of particular chemicals, they hope to learn about the conditions that are required to give birth to new stars.

Researchers have mapped out regions of cold gas within the Whirlpool Galaxy, as it is these pockets of gas that gradually condense to form the knots that are the seeds of new stars. These knots attract more dust and gas due to gravity until they eventually become dense enough to collapse into a hot core called a protostar.

Read more