Skip to main content

Astronomers catch the destruction of a red supergiant star in real time

When very large stars run out of fuel and reach the end of their lives, they can explode in massive, dramatic events called supernovas. These explosions throw off enormous amounts of light and energy, but there’s much we still don’t know about how this process happens. Now, astronomers have observed a red supergiant star going supernova for the first time, catching a glimpse of the massive star’s final moments of life.

“This is a breakthrough in our understanding of what massive stars do moments before they die,” said Wynn Jacobson-Galán, lead author of the study, in a statement. “Direct detection of pre-supernova activity in a red supergiant star has never been observed before in an ordinary Type II supernova. For the first time, we watched a red supergiant star explode!”

An artist’s impression of a red supergiant star in the final year of its life emitting a tumultuous cloud of gas.
An artist’s impression of a red supergiant star in the final year of its life emitting a tumultuous cloud of gas. This suggests at least some of these stars undergo significant internal changes before going supernova. W. M. Keck Observatory/Adam Makarenko

The team observed the supernova SN 2020tlf using two telescopes in Hawai’i, Pan-STARRS, and the W. M. Keck Observatory. They were able to spot the red supergiant before the supernova occurred as it was giving off significant amounts of light as well as ejecting large amounts of gas. They observed the star for 120 days before it went supernova in fall 2020, and they saw a dense cloud of gas surrounding the star when it exploded.

“Keck was instrumental in providing direct evidence of a massive star transitioning into a supernova explosion,” said senior author Raffaella Margutti, an associate professor of astronomy at UC Berkeley. “It’s like watching a ticking time bomb. We’ve never confirmed such violent activity in a dying red supergiant star where we see it produce such a luminous emission, then collapse and combust, until now.”

The star which exploded was particularly large, at 10 times the mass of the sun, and was located 120 million light-years away in the galaxy NGC 5731. It is of particular interest to researchers as it was so active before exploding, while previously observed red supergiants have been relatively calm before going supernova.

“I am most excited by all of the new ‘unknowns’ that have been unlocked by this discovery,” said Jacobson-Galán. “Detecting more events like SN 2020tlf will dramatically impact how we define the final months of stellar evolution, uniting observers and theorists in the quest to solve the mystery of how massive stars spend the final moments of their lives.”

The results are published in The Astrophysical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers spot a monster black hole ‘practically in our backyard’
The cross-hairs mark the location of the newly discovered monster black hole.

Black holes come in a variety of sizes, from stellar black holes a few times the mass of the sun all the way up to supermassive black holes, which are millions of times the mass of the sun and lurk at the heart of galaxies. Recently, astronomers discovered a massive black hole just 1,550 light-years away, which is right in our neighborhood, astronomically speaking. It is one of the closest black holes ever discovered, with a mass 12 times that of the sun. Being so close to us, it's an exciting target for future research.

The cross-hairs mark the location of the newly discovered monster black hole. Sloan Digital Sky Survey / S. Chakrabart et al.

Read more
Astronomers develop ‘early warning system’ for stars about to go supernova
This artist’s impression shows the supergiant star Betelgeuse as it was revealed thanks to different state-of-the-art techniques on ESO’s Very Large Telescope (VLT), which allowed two independent teams of astronomers to obtain the sharpest ever views of the supergiant star Betelgeuse. They show that the star has a vast plume of gas almost as large as our Solar System and a gigantic bubble boiling on its surface. These discoveries provide important clues to help explain how these mammoths shed material at such a tremendous rate.

One of the most dramatic cosmic events is a supernova, when a massive star runs out of fuel. The star explodes in an enormous burst of energy that can be seen even in other galaxies. We know essentially when these supernovae happen, but we aren't able to predict exactly when any given star will go supernova. Now, though, a team of astronomers has come up with an "early warning system" for stars approaching this critical point.

The astronomers from Liverpool John Moores University and the University of Montpellier simulated the development of a group of pre-supernova stars called red supergiants, which are some of the largest stars (though not necessarily the most massive). They include our famous neighbor Betelgeuse. These stars used to be massive stars around eight to 20 times the mass of the sun, but as their fuel runs out, they switch from fusing hydrogen to fusing helium, and they puff up to a larger size while cooling down.

Read more
Hunting for evidence of the first stars that ever existed
This artist’s impression shows a field of Population III stars as they would have appeared a mere 100 million years after the Big Bang. Astronomers may have discovered the first signs of their ancient chemical remains in the clouds surrounding one of the most distant quasars ever detected.

As the universe has aged, the type of stars found within it has changed. Heavy elements like iron are created by the reactions which happen inside stars, and when those stars eventually run out of fuel and explode as supernovae, those heavier elements are spread around and incorporated into the next generation of stars. So over time, stars gradually gained higher levels of these heavier elements, which astronomers refer to as their metallicity.

That means that if you could look back at the very earliest stars, born when the universe was young, they would be quite different from stars today. These early stars are known as Population III stars, formed when the universe was less than 100 million years old, and searching for them has been one of the holy grails of astronomy research.

Read more