Skip to main content

Strange object giving off bursts of energy unlike anything known

Astronomers have discovered a strange object giving off regular bursts of energy, unlike anything seen before. Discovered by a team from the International Centre for Radio Astronomy Research (ICRAR), three times per hour the object gives off bursts so powerful they are some of the brightest radio sources in the sky.

“This object was appearing and disappearing over a few hours during our observations. That was completely unexpected. It was kind of spooky for an astronomer because there’s nothing known in the sky that does that,” said lead researcher Natasha Hurley-Walker in a statement. “And it’s really quite close to us — about 4,000 light-years away. It’s in our galactic backyard.”

An artist’s impression of a magnetar.
An artist’s impression of what the object might look like if it’s a magnetar. Magnetars are incredibly magnetic neutron stars, some of which sometimes produce radio emissions. Known magnetars rotate every few seconds, but theoretically, ultra-long period magnetars could rotate much more slowly. ICRAR

The team’s theory is that the object could be a hypothesized object called an ultra-long period magnetar. Magnetars are neutron stars with very powerful magnetic fields which give off bursts of high-energy radiation, but those discovered so far spin much faster and emit pulses every 10 seconds or so. The much slower rate of pulses from this object, at around one every 20 minutes, suggests it must be spinning much more slowly.

Although longer-period magnetars have been predicted, none have been discovered to date. “It’s a type of slowly spinning neutron star that has been predicted to exist theoretically,” Hurley-Walker said. “But nobody expected to directly detect one like this because we didn’t expect them to be so bright. Somehow it’s converting magnetic energy to radio waves much more effectively than anything we’ve seen before.”

The team is planning to look for signs of similar objects in archival data from the Murchison Widefield Array (MWA) telescope which they used for the initial observations. They are also continuing to observe the object to see if it starts emitting pulses again. “If it does, there are telescopes across the Southern Hemisphere and even in orbit that can point straight to it,” Hurley-Walker said. “More detections will tell astronomers whether this was a rare one-off event or a vast new population we’d never noticed before.”

The research is published in the journal Nature.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Strange radio bursts shed light on mysterious galactic halos
radio bursts galactic halo artist  s impression of a fast burst traveling through sp

This artist’s impression represents the path of the fast radio burst FRB 181112 traveling from a distant host galaxy to reach the Earth. ESO/M. Kornmesser

In a galactic version of killing two birds with one stone, astronomers have come up with a way to investigate two different puzzling cosmic phenomena at the same time. Firstly, there are fast radio bursts, which are short and bright radio signals of unknown origin. Secondly, there are galactic halos, which are elusive spherical components of galaxies (as opposed to the flat disks you see in galaxies like our Milky Way).

Read more
NASA gives green light to mission to send car-sized drone to Saturn moon
An artist's impression of NASA's Dragonfly drone.

NASA’s Mars helicopter mission is now well and truly over, but following in its footsteps is an even more complex flying machine that's heading for Saturn’s largest moon.

The space agency on Tuesday gave the green light to the Dragonfly drone mission to Titan. The announcement means the design of the eight-rotor aircraft can now move toward completion, followed by construction and a testing regime to confirm the operability of the machine and its science instruments.

Read more
Hubble discovers over 1,000 new asteroids thanks to photobombing
This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern.

The Hubble Space Telescope is most famous for taking images of far-off galaxies, but it is also useful for studying objects right here in our own solar system. Recently, researchers have gotten creative and found a way to use Hubble data to detect previously unknown asteroids that are mostly located in the main asteroid belt between Mars and Jupiter.

The researchers discovered an incredible 1,031 new asteroids, many of them small and difficult to detect with several hundred of them less than a kilometer in size. To identify the asteroids, the researchers combed through a total of 37,000 Hubble images taken over a 19-year time period, identifying the tell-tale trail of asteroids zipping past Hubble's camera.

Read more