Skip to main content

Strange object giving off bursts of energy unlike anything known

Astronomers have discovered a strange object giving off regular bursts of energy, unlike anything seen before. Discovered by a team from the International Centre for Radio Astronomy Research (ICRAR), three times per hour the object gives off bursts so powerful they are some of the brightest radio sources in the sky.

“This object was appearing and disappearing over a few hours during our observations. That was completely unexpected. It was kind of spooky for an astronomer because there’s nothing known in the sky that does that,” said lead researcher Natasha Hurley-Walker in a statement. “And it’s really quite close to us — about 4,000 light-years away. It’s in our galactic backyard.”

An artist’s impression of a magnetar.
An artist’s impression of what the object might look like if it’s a magnetar. Magnetars are incredibly magnetic neutron stars, some of which sometimes produce radio emissions. Known magnetars rotate every few seconds, but theoretically, ultra-long period magnetars could rotate much more slowly. ICRAR

The team’s theory is that the object could be a hypothesized object called an ultra-long period magnetar. Magnetars are neutron stars with very powerful magnetic fields which give off bursts of high-energy radiation, but those discovered so far spin much faster and emit pulses every 10 seconds or so. The much slower rate of pulses from this object, at around one every 20 minutes, suggests it must be spinning much more slowly.

Although longer-period magnetars have been predicted, none have been discovered to date. “It’s a type of slowly spinning neutron star that has been predicted to exist theoretically,” Hurley-Walker said. “But nobody expected to directly detect one like this because we didn’t expect them to be so bright. Somehow it’s converting magnetic energy to radio waves much more effectively than anything we’ve seen before.”

The team is planning to look for signs of similar objects in archival data from the Murchison Widefield Array (MWA) telescope which they used for the initial observations. They are also continuing to observe the object to see if it starts emitting pulses again. “If it does, there are telescopes across the Southern Hemisphere and even in orbit that can point straight to it,” Hurley-Walker said. “More detections will tell astronomers whether this was a rare one-off event or a vast new population we’d never noticed before.”

The research is published in the journal Nature.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
ISS astronauts enjoy front row seats for comet’s journey toward the sun
Comet Tsuchinshan-ATLAS as seen from the space station.

Two NASA astronauts aboard the International Space Station (ISS) have been tracking the movement of a comet heading toward the sun and using the opportunity to capture some remarkable photos and footage.

ISS inhabitants Matthew Dominick and Don Pettit -- both already renowned for their impressive space-based photographic work -- have been monitoring comet C2023-A3 (also known as Tsuchinshan-ATLAS) for the past week or so and sharing their efforts on social media.

Read more
SpaceX’s Starlink service just hit a new customer milestone
A Starlink dish.

Starlink satellites being deployed by SpaceX. SpaceX / SpaceX

SpaceX has revealed that its internet-from-space Starlink service now has 4 million customers globally.

Read more
See the wonders of the Milky Way in this new infrared map
The Lobster Nebula seen with ESO’s VISTA telescope.

The wonders of our galaxy are on full display in a new infrared map of the Milky Way, showing a stunning 1.5 billion objects using data collected over 13 years. Researchers used the European Southern Observatory (ESO)’s VISTA telescope to collect 500 terabytes of data, showing the nebulae, globular clusters, stars, planets, brown dwarfs, and other objects that make up our galaxy.

The VISTA telescope (Visible and Infrared Survey Telescope for Astronomy), located on the Paranal Observatory in Chile, has an infrared instrument called VIRCAM that is able to look through clouds of dust and gas to observe objects that would be invisible in the visible light wavelength. Since 2010, researchers have been using this instrument to observe the Milky Way. They observed each patch of the sky multiple times, so they could see not only the location of particular objects but also how they were moving over time.

Read more