Skip to main content

Monster black hole gives off epic radio emissions as it chows down on gas

Black holes are counter-intuitive things. They have such strong gravity that they absorb everything that comes close to them, even light, but they can still glow brightly in certain wavelengths due to emissions being given off at their event horizons. Astronomers have captured incredible emissions from a monster black hole with a mass equivalent to 55 million suns, which is giving off radio eruptions large enough to cover a portion of the sky the length of 16 moons.

The radio emissions are coming from the supermassive black hole at the heart of the galaxy Centaurus A, located 12 million light-years away, which is gobbling down gas. As the black hole consumes this gas it ejects material at extremely high speeds which gives rise to “radio bubbles” that grow and reach out into space.

Centaurus A is a giant elliptical active galaxy 12 million light-years away.
Centaurus A is a giant elliptical active galaxy 12 million light-years away. At its heart lies a black hole with a mass of 55 million suns. This image shows the galaxy at radio wavelengths, revealing vast lobes of plasma that reach far beyond the visible galaxy, which occupies only a small patch at the center of the image. Ben McKinley, ICRAR/Curtin and Connor Matherne, Louisiana State University

“These radio waves come from material being sucked into the supermassive black hole in the middle of the galaxy,” lead author Dr. Benjamin McKinley of the International Centre for Radio Astronomy Research (ICRAR) explained in a statement. “It forms a disc around the black hole, and as the matter gets ripped apart going close to the black hole, powerful jets form on either side of the disc, ejecting most of the material back out into space, to distances of probably more than a million light-years.

“Previous radio observations could not handle the extreme brightness of the jets and details of the larger area surrounding the galaxy were distorted, but our new image overcomes these limitations.”

Centaurus A is a giant elliptical active galaxy 12 million light-years away.
This composite image shows the Centaurus A galaxy and the surrounding intergalactic space at several different wavelengths. The radio plasma is displayed in blue and appears to be interacting with hot X-ray emitting gas (orange) and cold neutral hydrogen (purple). Clouds emitting Halpha (red) are also shown above the main optical part of the galaxy which lies in between the two brightest radio blobs. Connor Matherne, Louisiana State University (Optical/Halpha), Kraft et al. (X-ray), Struve et al. (HI), Ben McKinley, ICRAR/Curtin. (Radio)

One reason to study Centaurus A is that it is the closest radio galaxy to our Milky Way, making it an ideal target for research. “We can learn a lot from Centaurus A in particular, just because it is so close and we can see it in such detail,” Dr. McKinley said. “Not just at radio wavelengths, but at all other wavelengths of light as well. In this research we’ve been able to combine the radio observations with optical and x-ray data, to help us better understand the physics of these supermassive black holes.”

The research is published in the journal Nature Astronomy.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Something strange is up with this black hole
Artist’s illustration of tidal disruption event AT2019dsg where a supermassive black hole spaghettifies and gobbles down a star. Some of the material is not consumed by the black hole and is flung back out into space.

One of the first things that people learn about black holes is that they absorb everything which comes close to them, but this isn't exactly accurate. It is true that once anything passes the event horizon of a black hole it can never escape, but there is a significant area around the black hole where its gravitational effects are still extremely strong but things can still escape. In fact, black holes regularly give off dramatic jets of matter, which are typically thrown out when material falls into the black hole and a small amount is ejected outward at great speeds.

But astronomers recently discovered a totally mysterious phenomenon, where a black hole is ejecting material years after it ripped apart a star. The black hole AT2019dsg is located 665 million light-years away and was observed tearing apart the star in 2018, then for unknown reasons, it became extremely active again in 2021. “This caught us completely by surprise — no one has ever seen anything like this before,” said lead author Yvette Cendes, a research associate at the Center for Astrophysics | Harvard & Smithsonian (CfA).

Read more
There’s a bubble of hot gas zipping around our galaxy’s supermassive black hole
This is the first image of Sagittarius A* (or Sgr A* for short), the supermassive black hole at the centre of our galaxy. It’s the first direct visual evidence of the presence of this black hole. It was captured by the Event Horizon Telescope (EHT), an array which linked together eight existing radio observatories across the planet to form a single “Earth-sized” virtual telescope. The telescope is named after the “event horizon”, the boundary of the black hole beyond which no light can escape.

At the center of our galaxy is an enormous black hole, surrounded by a swirl of glowing hot gas which forms a ring structure around the black hole itself. This structure was famously captured in the first-ever image of the supermassive black hole, named Sagittarius A*, which was released earlier this year. Now, scientists have discovered an oddity in this dramatic environment, detecting a bubble of hot gas which is orbiting around the black hole and its ring structure.

Sagittarius A* and animation of the hot spot around it

Read more
Astronomers want your help to spot hidden black holes
This simulation of a supermassive black hole shows how it distorts the starry background and captures light, producing a black hole silhouettes.

Black holes are some of the most mind-bending objects in the universe. They are so dense that anything which passes their event horizon, even light, can't escape. That's where they get their name, as the black hole itself is impossible to see. Fortunately for researchers, many black holes have material like dust and gas around them, and when this material falls into a black hole it can give off bursts of X-rays which allow them to locate the black hole.

But this isn't the case for every black hole. Some are not taking in material, meaning they don't give off X-rays and are much harder to locate. Now, a citizen science project is inviting members of the public to help search for these "hidden" black holes.

Read more