Skip to main content

Astronomers just spotted the largest cosmic explosion ever seen

Astronomers recently observed the largest cosmic explosion ever seen, far brighter than a supernova and lasting for much longer too. They believe that the outpouring of light is due to a supermassive black hole devouring a large cloud of gas.

Some of the brightest events seen in the sky are supernovae, which are huge explosions that occur when a massive star comes to the end of its life. But the recently observed event, called AT2021lwx, was 10 times brighter than any known supernova. Supernovae also typically last for a few months, but this event has been shining out for several years.

Artist’s impression of a black hole accretion.
Artist’s impression of a black hole accretion. John A. Paice

“We came upon this by chance, as it was flagged by our search algorithm when we were searching for a type of supernova,” said lead researcher Philip Wiseman of the University of Southampton in a statement. “Most supernovae and tidal disruption events only last for a couple of months before fading away. For something to be bright for two plus years was immediately very unusual.”

Recommended Videos

The researchers used several ground-based telescopes to observe the event, which had first been spotted in 2020. Because of how far away the explosion is, the event must have occurred around 8 billion years ago.

While bright events involving the supermassive black holes at the heart of galaxies typically show brightness rising and falling, that wasn’t the case here. “Looking back over a decade there was no detection of AT2021lwx, then it suddenly appeared as one of the most luminous things in the universe, which is unprecedented,” said co-author Mark Sullivan.

The researchers can’t say for certain what caused the explosion, but one theory is that it occurred when an enormous cloud of hydrogen gas strayed too close to a supermassive black hole, and parts of it were devoured as they passed the event horizon. That caused shock waves throughout the rest of the cloud and other material circling the black hole.

To understand more about the event, the researchers plan to observe it in different wavelengths such as X-rays. Upcoming telescopes like the Vera Rubin Observatory will also be able to look for other similar events, as it will perform regular surveys of half of the night sky to identify changes and spot transient events.

“With new facilities, like the Vera Rubin Observatory’s Legacy Survey of Space and Time, coming online in the next few years, we are hoping to discover more events like this and learn more about them,” Wiseman said. “It could be that these events, although extremely rare, are so energetic that they are key parts of how the centers of galaxies change over time.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble finds mysterious and elusive black hole
An international team of astronomers has used more than 500 images from the NASA/ESA Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence for the presence of an intermediate-mass black hole.

An international team of astronomers has used more than 500 images from the NASA/European Space Agency (ESA) Hubble Space Telescope spanning two decades to detect seven fast-moving stars in the innermost region of Omega Centauri, the largest and brightest globular cluster in the sky. These stars provide compelling new evidence of the presence of an intermediate-mass black hole. ESA/Hubble & NASA, M. Häberle (MPIA)

There's something strange about black holes. Astronomers often find small black holes, which are between five times and 100 times the mass of the sun. And they often find huge supermassive black holes, which are hundreds of thousands of times the mass of the sun or even larger. But they almost never find black holes in between those two sizes.

Read more
A cosmic explosion will create a bright new star in the sky
A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. The red giant is a large sphere in shades of red, orange, and white, with the side facing the white dwarf the lightest shades. The white dwarf is hidden in a bright glow of white and yellows, which represent an accretion disk around the star. A stream of material, shown as a diffuse cloud of red, flows from the red giant to the white dwarf. When the red giant moves behind the white dwarf, a nova explosion on the white dwarf ignites, creating a ball of ejected nova material shown in pale orange. After the fog of material clears, a small white spot remains, indicating that the white dwarf has survived the explosion.

A red giant star and white dwarf orbit each other in this animation of a nova similar to T Coronae Borealis. NASA/Goddard Space Flight Center

The night sky will soon be getting a brand new star when an expected cosmic explosion that will be visible from Earth even with the naked eye occurs this summer. It is the result of a phenomenon called a nova, where a binary star system called T Corona Borealis (T CrB) will explode in a flash of light that will take it from its dim form, currently visible only with a telescope, to a bright dot visible overhead.

Read more
Astronomers discover rare ‘exo-Venus’ just 40 light-years away
Gliese 12 b, which orbits a cool, red dwarf star located just 40 light-years away, promises to tell astronomers more about how planets close to their stars retain or lose their atmospheres. In this artist’s concept, Gliese 12 b is shown retaining a thin atmosphere.

Gliese 12 b, which orbits a cool, red dwarf star located just 40 light-years away, promises to tell astronomers more about how planets close to their stars retain or lose their atmospheres. In this artist’s concept, Gliese 12 b is shown retaining a thin atmosphere. NASA/JPL-Caltech/R. Hurt (Caltech-IPAC)

Astronomers have discovered a rare type of planet called an "exo-Venus," which is between the size of Earth and Venus and is located just 40 light-years away -- practically in our back yard. Although scientists think that planets of this size could be very common in our galaxy, they are hard to identify because they are so much smaller than the big gas giants that are more commonly discovered. This new planet also seems to have similar temperatures to Earth, and studying it could help to explain how atmospheres develop and how Earth became habitable.

Read more