Skip to main content

Astronomers just spotted the largest cosmic explosion ever seen

Astronomers recently observed the largest cosmic explosion ever seen, far brighter than a supernova and lasting for much longer too. They believe that the outpouring of light is due to a supermassive black hole devouring a large cloud of gas.

Some of the brightest events seen in the sky are supernovae, which are huge explosions that occur when a massive star comes to the end of its life. But the recently observed event, called AT2021lwx, was 10 times brighter than any known supernova. Supernovae also typically last for a few months, but this event has been shining out for several years.

Artist’s impression of a black hole accretion.
Artist’s impression of a black hole accretion. John A. Paice

“We came upon this by chance, as it was flagged by our search algorithm when we were searching for a type of supernova,” said lead researcher Philip Wiseman of the University of Southampton in a statement. “Most supernovae and tidal disruption events only last for a couple of months before fading away. For something to be bright for two plus years was immediately very unusual.”

The researchers used several ground-based telescopes to observe the event, which had first been spotted in 2020. Because of how far away the explosion is, the event must have occurred around 8 billion years ago.

While bright events involving the supermassive black holes at the heart of galaxies typically show brightness rising and falling, that wasn’t the case here. “Looking back over a decade there was no detection of AT2021lwx, then it suddenly appeared as one of the most luminous things in the universe, which is unprecedented,” said co-author Mark Sullivan.

The researchers can’t say for certain what caused the explosion, but one theory is that it occurred when an enormous cloud of hydrogen gas strayed too close to a supermassive black hole, and parts of it were devoured as they passed the event horizon. That caused shock waves throughout the rest of the cloud and other material circling the black hole.

To understand more about the event, the researchers plan to observe it in different wavelengths such as X-rays. Upcoming telescopes like the Vera Rubin Observatory will also be able to look for other similar events, as it will perform regular surveys of half of the night sky to identify changes and spot transient events.

“With new facilities, like the Vera Rubin Observatory’s Legacy Survey of Space and Time, coming online in the next few years, we are hoping to discover more events like this and learn more about them,” Wiseman said. “It could be that these events, although extremely rare, are so energetic that they are key parts of how the centers of galaxies change over time.”

The research is published in the journal Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers spot the shiniest exoplanet ever discovered
An artist impression of exoplanet LTT9779b orbiting its host star.

When you look up at the night sky you see mostly stars, not planets -- and that's simply because planets are so much smaller and dimmer than stars. But you can see planets in our solar system, like Venus, which is one of the brightest objects in the night sky. Due to its thick, dense atmosphere, Venus reflects 75% of the sun's light, making it shine brightly. Recently, though, astronomers discovered a planet that reflects even more of its star's light, making it the shiniest exoplanet ever found.

Exoplanet LTT9779 b reflects 80% of the light from its star, which it orbits very close to. That makes it extremely hot, and researchers believe that the planet is covered in clouds of silicate and liquid metal, which is what makes it so reflective.

Read more
Researchers want to use gravitational waves to learn about dark matter
Artist's conception shows two merging black holes similar to those detected by LIGO.

When two sufficiently massive objects collide -- such as when two black holes merge -- the forces can actually bend space-time, creating ripples called gravitational waves. These gravitational waves can be detected even from millions of light-years away, making them a way to learn about distant, dramatic events in far-off parts of the universe. And now, a team of astronomers has come up with a method for using gravitational waves to study the mysterious phenomenon of dark matter.

The idea of the research was to create different computer models of what gravitational waves from black hole mergers would look like in universes with different types of dark matter. By comparing the models to what is seen in the real world, we can learn more about what type of dark matter is most likely.

Read more
Astronomers spot an exoplanet creating spiral arms around its star
The Large Binocular Telescope in Arizona. The LBTI instrument combines infrared light from both 8.4-meter mirrors to image planets and disks around young and nearby stars.

When you imagine a galaxy like our Milky Way, you're probably picturing a swirl shape with arms reaching out from a central point. These spiral arms are a classic feature of many galaxies. Similar structures can be found around young stars which are surrounded by disks of matter from which planets form, called protoplanetary disks. Now, astronomers have discovered evidence that these structures could be created by recently formed exoplanets.

Astronomers used Large Binocular Telescope in Arizona to investigate a giant exoplanet named MWC 758c which seems to be forming the spiral arms around its host star. Located 500 light-years away, the star is just a few million years old, making it a baby in cosmic terms. "Our study puts forward a solid piece of evidence that these spiral arms are caused by giant planets," said lead researcher Kevin Wagner of the University of Arizona in a statement. "And with the new James Webb Space Telescope, we will be able to further test and support this idea by searching for more planets like MWC 758c."

Read more