Skip to main content

Teenage ‘lava world’ is the youngest exoplanet of its type discovered so far

TESS Finds Related Stars Have Young Exoplanets

Exoplanets come in many different types and sizes, and to understand how planets form and develop, it’s helpful to see them at a variety of different points throughout their life cycle. NASA’s exoplanet-hunting satellite TESS has recently discovered four “teenage” exoplanets, including one dramatic lava world that orbits ultra-close to its star.

TESS investigated two young stars that are close to each other and thought to be related, TOI 2076 and TOI 1807. It found four exoplanets in orbit around them that are in a rarely-spotted middle phase between recent birth and maturity.

“The planets in both systems are in a transitional, or teenage, phase of their life cycle,” said Christina Hedges, an astronomer at the Bay Area Environmental Research Institute in Moffett Field and NASA’s Ames Research Center in Silicon Valley. “They’re not newborns, but they’re also not settled down. Learning more about planets in this teen stage will ultimately help us understand older planets in other systems.”

Three of the exoplanets orbit TOI 2076, each of which is called a mini-Neptune, as they are between Earth and Neptune in size.

But the really dramatic planet is the one seen orbiting TOI 1807. The planet, TOI 1807 b, is so close to its star that a year there lasts just 13 hours. This planet is the youngest version of such a planet, called an ultra-short period planet, yet discovered. If the planet is mostly rock and doesn’t have a thick atmosphere, researchers predict that it could be covered in lakes or even oceans of lava.

Potential lava world TOI 1807 b.
Short-period planets, or those with orbits shorter than one day, are rare. Potential lava world TOI 1807 b, illustrated here, is the youngest example yet discovered. NASA’s Goddard Space Flight Center/Chris Smith (KBRwyle)

This planet is also bombarded with UV radiation because its star is so young and active. It is estimated that the planet is hit with 22,000 times the amount of UV radiation from its star than Earth gets from the sun. And the other star is similarly active as well.

“The stars produce perhaps 10 times more UV light than they will when they reach the sun’s age,” said co-author George Zhou, an astrophysicist at the University of Southern Queensland in Australia. “Since the sun may have been equally as active at one time, these two systems could provide us with a window into the early conditions of the solar system.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Previously unknown exoplanet discovered using machine learning
exoplanet discovered machine learning image png

When it comes to discovering new astronomical bodies, sometimes humans are irreplaceable thanks to their skills in pattern detection. But in other cases, computers can spot things that aren't visible to humans -- including a recent instance where an exoplanet was discovered using machine learning.

The exoplanet was discovered by University of Georgia researchers within a protoplanetary disk called HD 142666. A protoplanetary disk is a rotating disk of gas that swirls around young stars, and from which planets are formed. Planets are formed within these disks as matter clumps together until it eventually has enough gravity to pull more material in. The researchers looked at a previous set of observations of a whole set of protoplanetary disks, and used a machine learning model to search for exoplanets that might have been missed the first time around. They identified one disk where a planet was likely to be, based on the unusual way that gas moved around within the disk.

Read more
Perseverance rover collects its first sample from Jezero delta
This image shows the rocky outcrop the Perseverance science team calls Berea after the NASA Mars rover extracted a rock core and abraded a circular patch. The image was taken by the rover's Mastcam-Z instrument on March 30, 2023.

Things are heating up on Mars, as the Perseverance rover begins its new science campaign. In its previous science campaign, the NASA rover explored the floor of the Jezero crater, but now it has moved on to investigate an exciting location called the delta. As the site of an ancient river delta, this region is a great location to search for evidence of ancient life and to find rocks carried from far-off locations by the river that was there millions of years ago.

Perseverance collected its first sample of this science campaign last week, on Thursday, March 30. This is the 19th sample of rock and dust that the rover has collected so far, with 10 of those samples carefully left behind in a sample cache on the Martian surface. The latest sample was collected from a rock named "Berea" which is thought to be made up of deposits that were carried by the river.

Read more
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more