Skip to main content

Astronomers share early images from James Webb’s galaxy survey

One of the major aims of the James Webb Space Telescope is to observe some of the earliest galaxies in the universe, and to do that it needs to be able to see extremely distant objects. But looking at a particular very old galaxy in detail is only half of the problem. To truly understand the earliest stages of the universe, astronomers also need to see how these very old galaxies are distributed so they can understand the large-scale structure of the universe.

That’s the aim of the COSMOS-Web program, which is using James Webb to survey a wide area of the sky and look for these rare, ancient galaxies. It aims to study up to 1 million galaxies during over 255 hours of observing time, using both Webb’s near-infrared camera (NIRCam) and its mid-infrared instrument (MIRI) camera. While there is still plenty of observing left to do, the researchers in the COSMOS-Web program recently shared some of their first results.

Images of four example galaxies selected from the first epoch of COSMOS-Web NIRCam observations, highlighting the range of structures that can be seen. In the upper left is a barred spiral galaxy; in the upper right is an example of a gravitational lens, where the mass of the central galaxy is causing the light from a distant galaxy to be stretched into arcs; on the lower left is nearby galaxy displaying shells of material, suggesting it merged with another galaxy in its past; on the lower right is a barred spiral galaxy with several clumps of active star formation.
These images of four example galaxies selected from the first epoch of COSMOS-Web NIRCam observations highlight the range of structures that can be seen. In the upper-left is a barred spiral galaxy; in the upper-right is an example of a gravitational lens, where the mass of the central galaxy is causing the light from a distant galaxy to be stretched into arcs; on the lower-left is sa nearby galaxy displaying shells of material, suggesting it merged with another galaxy in its past; on the lower-right is a barred spiral galaxy with several clumps of active star formation. COSMOS-Web/Kartaltepe, Casey, Franco, Larson, et al./RIT/UT Austin/IAP/CANDIDE

“It’s incredibly exciting to get the first data from the telescope for COSMOS-Web,” said principal investigator Jeyhan Kartaltepe of the Rochester Institute of Technology, in a statement. “Everything worked beautifully, and the data are even better than we expected. We’ve been working really hard to produce science-quality images to use for our analysis, and this is just a drop in the bucket of what’s to come.”

The first images include four galaxies, chosen because they represent the different types of galaxy that the survey will find. There is a barred spiral galaxy, like our Milky Way, and a similar galaxy undergoing vigorous star formation. There is also a galaxy that seems to have recently merged, and one galaxy whose light is bent due to gravitational lensing.

The first epoch of COSMOS-Web NIRCam observations obtained on Jan. 5-6, 2023, including the F115W, F150W, F277W, and F444W filters as a color composite. These data cover six visits or pointings out of a total of 152 visits. The total area covered by NIRCam here is ∼77arcmin^2. The relative position of this mosaic in the survey is shown at upper left. At lower left are several zoomed-in 10′′ × 10′′ cutouts and one 16′′ × 16′′ cutout showing specific galaxies selected from these first data.
The first epoch of COSMOS-Web NIRCam observations obtained on Jan. 5-6, 2023, including the F115W, F150W, F277W, and F444W filters as a color composite.  COSMOS-Web/Kartaltepe, Casey, Franco, Larson, et al./RIT/UT Austin/IAP/CANDIDE

These are just a tiny slice of the galaxies identified by the survey so far. The image above shows the observations taken between January 5 and 6 this year, giving an indication of just how big and detailed the eventual full survey will be. This mosaic was made up of six pointings by the telescope, out of a total of 77 to be made in April and May this year, with a further 69 coming in December 2023 and January 2024.

“This first snapshot of COSMOS-Web contains about 25,000 galaxies — an astonishing number larger than even what sits in the Hubble Ultra Deep Field,” said principal investigator Caitlin Casey of the University of Texas at Austin. “It’s one of the largest JWST images taken so far. And yet it’s just 4% of the data we will get for the full survey. When it is finished, this deep field will be astoundingly large and overwhelmingly beautiful.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
This famous supernova remnant is hiding a secret
Webb’s NIRCam (Near-Infrared Camera) captured this detailed image of SN 1987A (Supernova 1987A). At the center, material ejected from the supernova forms a keyhole shape. Just to its left and right are faint crescents newly discovered by Webb. Beyond them an equatorial ring, formed from material ejected tens of thousands of years before the supernova explosion, contains bright hot spots. Exterior to that is diffuse emission and two faint outer rings. In this image blue represents light at 1.5 microns (F150W), cyan 1.64 and 2.0 microns (F164N, F200W), yellow 3.23 microns (F323N), orange 4.05 microns (F405N), and red 4.44 microns (F444W).

When massive stars reach the end of their lives and explode in a supernova, they can leave behind huge structures in space called supernova remnants. These are often favorite targets of astronomers because of their beautiful and distinctive shapes. They include the famous SN 1987A remnant that was imaged by the James Webb Space Telescope last year. Now, astronomers using Webb have peered closer at this remnant and found something special inside.

The SN 1987A supernova was first observed in 1987 (hence its name) and was bright enough to be seen with the naked eye, making it extremely recent by astronomical standards. Stars live for millions or even billions of years, so observing one coming to the end of its life in real time is a real scientific treat. When this star died, it created a kind of supernova called a core collapse, or Type II, in which the heart of the star runs out of fuel, causing it to collapse suddenly and violently. This collapse it so severe that the material rebounds and is thrown out in an explosion traveling up to a quarter of the speed of light.

Read more
James Webb photographs two potential exoplanets orbiting white dwarfs
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it's a rare thing that any telescope can take an image of one of these planets. That's because they are so small and dim compared to the stars that they orbit around that it's easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Read more
See 19 gorgeous face-on spiral galaxies in new James Webb data
This collection of 19 face-on spiral galaxies from the NASA/ESA/CSA James Webb Space Telescope in near- and mid-infrared light is at once overwhelming and awe-inspiring. Webb’s NIRCam (Near-Infrared Camera) captured millions of stars in these images. Older stars appear blue here, and are clustered at the galaxies’ cores. The telescope’s MIRI (Mid-Infrared Instrument) observations highlight glowing dust, showing where it exists around and between stars – appearing in shades of red and orange. Stars that haven’t yet fully formed and are encased in gas and dust appear bright red.

A stunning new set of images from the James Webb Space Telescope illustrates the variety of forms that exist within spiral galaxies like our Milky Way. The collection of 19 images shows a selection of spiral galaxies seen from face-on in the near-infrared and mid-infrared wavelengths, highlighting the similarities and differences that exist across these majestic celestial objects.

“Webb’s new images are extraordinary,” said Janice Lee of the Space Telescope Science Institute, in a statement. “They’re mind-blowing even for researchers who have studied these same galaxies for decades. Bubbles and filaments are resolved down to the smallest scales ever observed, and tell a story about the star formation cycle.”

Read more