Skip to main content

Astronomers share early images from James Webb’s galaxy survey

One of the major aims of the James Webb Space Telescope is to observe some of the earliest galaxies in the universe, and to do that it needs to be able to see extremely distant objects. But looking at a particular very old galaxy in detail is only half of the problem. To truly understand the earliest stages of the universe, astronomers also need to see how these very old galaxies are distributed so they can understand the large-scale structure of the universe.

That’s the aim of the COSMOS-Web program, which is using James Webb to survey a wide area of the sky and look for these rare, ancient galaxies. It aims to study up to 1 million galaxies during over 255 hours of observing time, using both Webb’s near-infrared camera (NIRCam) and its mid-infrared instrument (MIRI) camera. While there is still plenty of observing left to do, the researchers in the COSMOS-Web program recently shared some of their first results.

Images of four example galaxies selected from the first epoch of COSMOS-Web NIRCam observations, highlighting the range of structures that can be seen. In the upper left is a barred spiral galaxy; in the upper right is an example of a gravitational lens, where the mass of the central galaxy is causing the light from a distant galaxy to be stretched into arcs; on the lower left is nearby galaxy displaying shells of material, suggesting it merged with another galaxy in its past; on the lower right is a barred spiral galaxy with several clumps of active star formation.
These images of four example galaxies selected from the first epoch of COSMOS-Web NIRCam observations highlight the range of structures that can be seen. In the upper-left is a barred spiral galaxy; in the upper-right is an example of a gravitational lens, where the mass of the central galaxy is causing the light from a distant galaxy to be stretched into arcs; on the lower-left is sa nearby galaxy displaying shells of material, suggesting it merged with another galaxy in its past; on the lower-right is a barred spiral galaxy with several clumps of active star formation. COSMOS-Web/Kartaltepe, Casey, Franco, Larson, et al./RIT/UT Austin/IAP/CANDIDE

“It’s incredibly exciting to get the first data from the telescope for COSMOS-Web,” said principal investigator Jeyhan Kartaltepe of the Rochester Institute of Technology, in a statement. “Everything worked beautifully, and the data are even better than we expected. We’ve been working really hard to produce science-quality images to use for our analysis, and this is just a drop in the bucket of what’s to come.”

Recommended Videos

The first images include four galaxies, chosen because they represent the different types of galaxy that the survey will find. There is a barred spiral galaxy, like our Milky Way, and a similar galaxy undergoing vigorous star formation. There is also a galaxy that seems to have recently merged, and one galaxy whose light is bent due to gravitational lensing.

The first epoch of COSMOS-Web NIRCam observations obtained on Jan. 5-6, 2023, including the F115W, F150W, F277W, and F444W filters as a color composite. These data cover six visits or pointings out of a total of 152 visits. The total area covered by NIRCam here is ∼77arcmin^2. The relative position of this mosaic in the survey is shown at upper left. At lower left are several zoomed-in 10′′ × 10′′ cutouts and one 16′′ × 16′′ cutout showing specific galaxies selected from these first data.
The first epoch of COSMOS-Web NIRCam observations obtained on Jan. 5-6, 2023, including the F115W, F150W, F277W, and F444W filters as a color composite.  COSMOS-Web/Kartaltepe, Casey, Franco, Larson, et al./RIT/UT Austin/IAP/CANDIDE

These are just a tiny slice of the galaxies identified by the survey so far. The image above shows the observations taken between January 5 and 6 this year, giving an indication of just how big and detailed the eventual full survey will be. This mosaic was made up of six pointings by the telescope, out of a total of 77 to be made in April and May this year, with a further 69 coming in December 2023 and January 2024.

“This first snapshot of COSMOS-Web contains about 25,000 galaxies — an astonishing number larger than even what sits in the Hubble Ultra Deep Field,” said principal investigator Caitlin Casey of the University of Texas at Austin. “It’s one of the largest JWST images taken so far. And yet it’s just 4% of the data we will get for the full survey. When it is finished, this deep field will be astoundingly large and overwhelmingly beautiful.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble is turning 35: Here are its best images from the last year
This new image showcases NGC 346, a dazzling young star cluster in the Small Magellanic Cloud.

This month sees a very special birthday: the 35th anniversary of the Hubble Space Telescope. The venerable old space telescope was launched on April 24, 1990, so now is the perfect time to celebrate this beloved instrument and the contributions it continues to make to science and our understanding of space.

Even though newer telescopes like the James Webb Space Telescope are more powerful than Hubble, it still fulfills an important role as an optical space telescope -- meaning that it looks primarily in the same wavelengths that the human eye can see. Webb looks in the infrared portion of the spectrum, so by working together the two telescopes can get a fuller view of an object than either could get on their own.

Read more
SpaceX shares first views of polar regions from Crew Dragon
The view from the Crew Dragon on SpaceX's Fram2 mission.

SpaceX has just shared a video from the Fram2 mission, which has become the first-ever crewed flight to take a polar orbit.

The footage (below), captured by a camera attached to the opened nose cone of the Crew Dragon spacecraft about 265 miles up, features stunning scenery from the iciest regions on the planet. It also shows the Crew Dragon’s cupola window that offers the crew dramatic panoramic views of Earth and beyond. 

Read more
James Webb captures a rare astronomical ring in the sky
This new NASA/ESA/CSA James Webb Space Telescope Picture of the Month features a rare cosmic phenomenon called an Einstein ring. What at first appears to be a single, strangely shaped galaxy is actually two galaxies that are separated by a large distance. The closer foreground galaxy sits at the center of the image, while the more distant background galaxy appears to be wrapped around the closer galaxy, forming a ring.

A striking new image from the James Webb Space Telescope shows a rare object called an Einstein ring. This shows what appears to be a ring-shaped object in the sky, but is actually created by two separate galaxies and the epic forces of gravity.

There's a useful astronomical phenomenon called gravitational lensing, in which a large object like a galaxy or a cluster of galaxies has so much mass that it actually bends spacetime. If a massive object sits in front of a more distant object, as seen from Earth, the massive object can act like a magnifying glass, letting us see the very distant object in more detail than would normally be possible. This is a relatively common finding in astronomical images, and is one way that scientists are able to study extremely distant galaxies.

Read more