Skip to main content

How engineers are getting James Webb’s NIRSpec instrument ready for science

While engineers for the James Webb Space Telescope continue the long and delicate process of aligning its mirrors in order to get the telescope ready for science operations this summer, other teams are working on preparing the telescope’s four science instruments for operations. One of the instruments, the Near-Infrared Spectrograph (NIRSpec), recently hit a milestone when it completed initial check-outs for three of its mechanisms. Now, members of NASA and the European Space Agency (ESA) have shared more information about NIRSpec and how it is being prepared to investigate targets including some of the oldest galaxies in the universe.

There are three mechanisms crucial to the operation of NIRSpec: A Filter Wheel Assembly (FWA), a Grating Wheel Assembly (GWA), and a Refocus Mechanism Assembly (RMA). These work together to allow the operation of the spectrograph, which splits light into a color spectrum. By looking at the spectrum of light from distant objects, scientists can tell what those objects are made of, as different elements absorb light in different wavelengths.

To make sure only light within the wavelengths being investigated gets to the instrument, NIRSpec uses filters to block out unwanted wavelengths, and these filters are controlled by the FWA. To focus the light, the instrument uses the RMA. And the light is separated into a spectrum using gratings, a prism, and a mirror in the GWA.

The engineers described how they checked each of these components: “We operated the Filter Wheel Assembly first, cycling it through all eight of its positions in both forward and reverse directions… At each position, we recorded a set of reference data. This data showed us how well the wheel was moving and how accurately it settled into each position… The data showed that the wheel moved very well even in the first attempt.”

The operation of the GWA was similarly successful. “We then used a very similar procedure for the Grating Wheel Assembly, which also performed excellently the first time,” they wrote. And finally, the RMA mechanism, which will help to focus the instrument, was moved through a few hundred steps to check it could be positioned correctly. These tests went well too, with the team writing, “successful completion of this test showed us that the RMA is a well-behaved and healthy mechanism.”

Everything is looking good for NIRSpec, so now the instrument can continue being tested and calibrated ahead of its first science data collection in a few months. “In the coming months, the NIRSpec team will continue their commissioning efforts,” the team wrote. “The whole team is very much looking forward to the start of science observations this summer!”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Scientists explain cosmic ‘question mark’ spotted by Webb space telescope
The shape of a question mark captured by the James Webb Space Telescope.

Considering the myriad of unknowns that still exist for scientists exploring the vastness of the universe, the recent discovery in deep space of what seems to be a giant question mark feels highly appropriate.

Captured by the powerful James Webb Space Telescope, the bright, distinctive object clearly bears the shape of a question mark, leaving some stargazers wondering if the cosmos is teasing us, or perhaps motivating us to keep on searching the depths of space for the secrets that it may reveal.

Read more
James Webb telescope captures the gorgeous Ring Nebula in stunning detail
JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).

A new image from the James Webb Space Telescope shows the stunning and distinctive Ring Nebula -- a gorgeous structure of dust and gas located in the constellation of Lyra. This nebula is a favorite among sky watchers as it faces toward Earth so we can see its beautiful structure, and because it is visible throughout the summer from the Northern Hemisphere. It is different from the Southern Ring nebula, which Webb has also imaged, but both are a type of object called a planetary nebula.

Located just 2,600 light-years away, the Ring Nebula is a structure of dust and gas that was first observed in the 1770s, when it was thought to be something like a planet. With advances in technology, astronomers realized it was not a planet, but rather a cloud of dust and gas, and thanks to highly detailed observations by space telescopes like Hubble and Webb, scientists have been able to see more of its complex structure. The nebula isn't a simple sphere or blob, but is rather a central, football-shaped structure surrounded by rings of different material.

Read more
See how James Webb instruments work together to create stunning views of space
The irregular galaxy NGC 6822.

A series of new images from the James Webb Space Telescope shows the dusty, irregular galaxy NGC 6822 -- and the different views captured by various Webb instruments.

Located relatively close by at 1.5 million light-years from Earth, this galaxy is notable for its low metallicity. Confusingly, when astronomers say metallicity they do not mean the amount of metals present in a galaxy, but rather the amount of all heavy elements -- i.e., everything which isn't hydrogen or helium. This factor is important because the very earliest galaxies in the universe were made up almost entirely of hydrogen and helium, meaning they had low metallicity, and the heavier elements were created over time in the heart of stars and were then distributed through the universe when some of those stars went supernova.

Read more