Skip to main content

James Webb detects important molecule in the stunning Orion nebula

The Orion Nebula is famous for its beauty, but it was also the site of a recent exciting scientific discovery. The James Webb Space Telescope has detected an important molecule in a planet-forming disk of debris within the nebula. The molecule, called methyl cation (CH3+), is a carbon compound that is important for the formation of life and has never been observed in space before.

This image is NIRCam’s view of the Orion Bar region studied by the team of astronomers. Bathed in harsh ultraviolet light from the stars of the Trapezium Cluster, it is an area of intense activity, with star formation and active astrochemistry. This made it a perfect place to study the exact impact that ultraviolet radiation has on the molecular makeup of the discs of gas and dust that surround new stars. The radiation erodes the nebula’s gas and dust in a process known as photoevaporation; this creates the rich tapestry of cavities and filaments that fill the view. The radiation also ionises the molecules, causing them to emit light — not only does this create a beautiful vista, it also allows astronomers to study the molecules using the spectrum of their emitted light obtained with Webb’s MIRI and NIRSpec instruments.
This image is NIRCam’s view of the Orion Bar region studied by the team of astronomers. Bathed in harsh ultraviolet light from the stars of the Trapezium Cluster, it is an area of intense activity, with star formation and active astrochemistry. This made it a perfect place to study the exact impact that ultraviolet radiation has on the molecular makeup of the discs of gas and dust that surround new stars. ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), the PDRs4All ERS Team

Webb studied a part of the nebula using its NIRCam and MIRI instruments, observing an area where bright young stars are being born and giving off ionizing radiation which makes nearby dust and gas glow beautifully. As well as making for a stunning image, the glow also allows spectroscopy instruments to study the chemical composition of the disk by splitting the light coming from it into wavelengths and seeing which wavelengths have been absorbed.

Combining data from both instruments allowed scientists to identify the presence of methyl cation.

An international team of scientists have used data collected by the NASA/ESA/CSA James Webb Space Telescope to detect a molecule known as the methyl cation (CH3+) for the first time, located in the protoplanetary disc surrounding a young star. They accomplished this feat with a cross-disciplinary expert analysis, including key input from laboratory spectroscopists. The vital role of CH3+ in interstellar carbon chemistry has been predicted since the 1970s, but Webb’s unique capabilities have finally made observing it possible — in a region of space where planets capable of accommodating life could eventually form.
An international team of scientists have used data collected by the NASA/ESA/CSA James Webb Space Telescope to detect a molecule known as the methyl cation (CH3+) for the first time, located in the protoplanetary disc surrounding a young star. ESA/Webb, NASA, CSA, M. Zamani (ESA/Webb), the PDRs4All ERS Team

This particular molecule is a key part of organic chemistry, as it helps other carbon-based molecules form. It was identified in a planet-forming disk around a small red dwarf star called d203-506, located 1350 light-years away. The system is young, and it experiences high levels of ultraviolet radiation from other nearby stars. And while ultraviolet radiation is often destructive to organic molecules, in this case, the radiation may actually have helped the methyl cation to form.

One theory is that energy from the radiation helps the molecule to form. The researchers also found that nearby disks which didn’t experience so much radiation had more water present, unlike the disk d203-506 which had no water. “This clearly shows that ultraviolet radiation can completely change the chemistry of a proto-planetary disc,” said lead author Olivier Berné of the University of Toulouse in a statement. “It might actually play a critical role in the early chemical stages of the origins of life by helping to produce CH3+ — something that has perhaps previously been underestimated.”

The research is published in the journal Nature.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Scientists explain cosmic ‘question mark’ spotted by Webb space telescope
The shape of a question mark captured by the James Webb Space Telescope.

Considering the myriad of unknowns that still exist for scientists exploring the vastness of the universe, the recent discovery in deep space of what seems to be a giant question mark feels highly appropriate.

Captured by the powerful James Webb Space Telescope, the bright, distinctive object clearly bears the shape of a question mark, leaving some stargazers wondering if the cosmos is teasing us, or perhaps motivating us to keep on searching the depths of space for the secrets that it may reveal.

Read more
James Webb telescope captures the gorgeous Ring Nebula in stunning detail
JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).

A new image from the James Webb Space Telescope shows the stunning and distinctive Ring Nebula -- a gorgeous structure of dust and gas located in the constellation of Lyra. This nebula is a favorite among sky watchers as it faces toward Earth so we can see its beautiful structure, and because it is visible throughout the summer from the Northern Hemisphere. It is different from the Southern Ring nebula, which Webb has also imaged, but both are a type of object called a planetary nebula.

Located just 2,600 light-years away, the Ring Nebula is a structure of dust and gas that was first observed in the 1770s, when it was thought to be something like a planet. With advances in technology, astronomers realized it was not a planet, but rather a cloud of dust and gas, and thanks to highly detailed observations by space telescopes like Hubble and Webb, scientists have been able to see more of its complex structure. The nebula isn't a simple sphere or blob, but is rather a central, football-shaped structure surrounded by rings of different material.

Read more
See how James Webb instruments work together to create stunning views of space
The irregular galaxy NGC 6822.

A series of new images from the James Webb Space Telescope shows the dusty, irregular galaxy NGC 6822 -- and the different views captured by various Webb instruments.

Located relatively close by at 1.5 million light-years from Earth, this galaxy is notable for its low metallicity. Confusingly, when astronomers say metallicity they do not mean the amount of metals present in a galaxy, but rather the amount of all heavy elements -- i.e., everything which isn't hydrogen or helium. This factor is important because the very earliest galaxies in the universe were made up almost entirely of hydrogen and helium, meaning they had low metallicity, and the heavier elements were created over time in the heart of stars and were then distributed through the universe when some of those stars went supernova.

Read more