Skip to main content

Scientists investigate star formation in the famous Whirlpool Galaxy

Scientists are turning to the beautiful and famous Whirlpool Galaxy to look for areas where stars could eventually be born. By mapping out the presence of particular chemicals, they hope to learn about the conditions that are required to give birth to new stars.

Researchers have mapped out regions of cold gas within the Whirlpool Galaxy, as it is these pockets of gas that gradually condense to form the knots that are the seeds of new stars. These knots attract more dust and gas due to gravity until they eventually become dense enough to collapse into a hot core called a protostar.

This illustration depicts the distribution of diazenylium molecule radiation (false colours) in the Whirlpool Galaxy, compared with an optical image. The reddish areas in the photograph represent luminous gas nebulae containing hot, massive stars traversing dark zones of gas and dust in the spiral arms. The presence of diazenylium in these dark regions suggests particularly cold and dense gas clouds.
This illustration depicts the distribution of diazenylium molecule radiation (false colors) in the Whirlpool Galaxy, compared with an optical image. The reddish areas in the photograph represent luminous gas nebulae containing hot, massive stars traversing dark zones of gas and dust in the spiral arms. The presence of diazenylium in these dark regions suggests particularly cold and dense gas clouds. Thomas Müller (HdA/MPIA), S. Stuber et al. (MPIA), NASA, ESA, S. Beckwith (STScI), and the Hubble Heritage Team (STScI/AURA)

“To investigate the early phases of star formation, where gas gradually condenses to eventually produce stars, we must first identify these regions,” explained lead author Sophia Stuber of the Max Planck Institute for Astronomy (MPIA) in a statement. “For this purpose, we typically measure the radiation emitted by specific molecules that are particularly abundant in these extremely cold and dense zones.”

Normally researchers look for molecules like hydrogen cyanide and diazenylium when they are seeking to understand star formation within our galaxy. But looking for these chemicals in another galaxy gives a bigger picture of star formation.

“But only now have we been able to measure these signatures in great detail over an extensive range within a galaxy outside the Milky Way, covering various zones with diverse conditions,” said Eva Schinnerer, research group leader at MPIA. “Even at first glance, it’s evident that while the two molecules effectively reveal dense gas, they also disclose interesting differences.”

The illustration above shows the areas of diazenylium within the Whirlpool Galaxy, which is different from the areas where hydrogen cyanide was found, particularly in the galaxy’s center. This may be because the two gases emit light at different rates, such as when they are heated up as they whirl around the supermassive black hole at the galaxy’s heart.

The researchers consider that diazenylium is the more reliable indication of density in this case, but it is a much fainter signal, making it more difficult to observe. That would make it harder to use for other galaxies that aren’t as bright as the Whirlpool.

“Although we can learn a lot from the detailed observation program with the Whirlpool Galaxy, it is, in a sense, a pilot project,” Stuber said. “We would love to explore more galaxies in this way in the future.”

The research will be published in the journal Astronomy & Astrophysics.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures the magnificent Whirlpool Galaxy in two wavelengths
The graceful winding arms of the grand-design spiral galaxy M51 stretch across this image from the NASA/ESA/CSA James Webb Space Telescope. Unlike the menagerie of weird and wonderful spiral galaxies with ragged or disrupted spiral arms, grand-design spiral galaxies boast prominent, well-developed spiral arms like the ones showcased in this image. This galactic portrait is a composite image that integrates data from Webb’s Near-InfraRed Camera (NIRCam) and Mid-InfraRed Instrument (MIRI).

A new image from the James Webb Space Telescope shows a stunning view of spiral galaxy M51, also known as the Whirlpool Galaxy, a galaxy so picturesque it is designated a grand-design spiral galaxy for its prominent, clearly defined spiral arms. The image shows off these arms in their full beauty, reaching out from the galactic center and captured in the infrared wavelengths to show off their structure.

The image was taken using two of Webb's instruments operating in different parts of the infrared: the Near-InfraRed Camera (NIRCam) and the Mid-InfraRed Instrument (MIRI).

Read more
Wild ‘heartbreak’ star has waves three times the height of the sun
Artist conception of the system, where the smaller star induces breaking surface waves in the more massive companion.

Astronomers often share news about strange and exotic exoplanets, like one that is shaped like a football or another that has metallic rain. But far-off stars can be strange as well, as one recent piece of research points out. An enormous new type of star, which researchers are calling a "heartbreak" star, has gigantic waves on its surface that are three time the size of our sun.

The star, officially called MACHO 80.7443.1718, gives off regular pulses of brightness, making it similar to a known type of star called a heartbeat star. Stars like this are typically one of a pair, which orbit each other in an elongated, oval-shaped orbit. When the two stars come close to each other, their gravitational forces pull at each other, creating waves on their surfaces, similar to how the moon causes tides on Earth. But this particular star is an extreme version of the phenomenon, with brightness that varies by 200 times as much as a typical example.

Read more
Hubble observes a galaxy that hosted an epic supernova explosion
The tranquil spiral galaxy UGC 12295.

This week's image from the Hubble Space Telescope shows a stunning view of a spiral galaxy called UGC 12295, located nearly 200 million light-years away. This galaxy appears face-on from Earth, meaning we can get a great view of its structure and spiral arms -- captured here using Hubble's Wide Field Camera 3 instrument.

The galaxy UGC 12295 is best known for being the location of a supernova observed in 2015. A supernova occurs when a massive star, much bigger than our sun, runs out of fuel and comes to the end of its life. As the star has less and less fuel and no longer produces as much outward pressure from the fusion occurring at its core, the gravity pushing in on the star takes over and causes the star to collapse. This collapse happens so fast that it creates a shockwave that causes the star's outer layers to explode, an event called a supernova.

Read more