Skip to main content

James Webb photographs two potential exoplanets orbiting white dwarfs

Even though scientists have now discovered more than 5,000 exoplanets, or planets outside our solar system, it’s a rare thing that any telescope can take an image of one of these planets. That’s because they are so small and dim compared to the stars that they orbit around that it’s easier to detect their presence based on their effects on the star rather than them being detected directly.

However, thanks to its exceptional sensitivity, the James Webb Space Telescope was recently able to image two potential exoplanets orbiting around small, cold cores of dead stars called white dwarfs directly.

Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star.
Illustration of a cloudy exoplanet and a disk of debris orbiting a white dwarf star. NASA/JPL-Caltech

White dwarfs are the cores that remain after a star, like our sun, comes to the end of its life. In around 5 billion years’ time, our sun will puff up to a much larger size, growing to 200 times its previous radius and engulfing Mercury, Venus, and maybe even Earth before collapsing down to a cool core. In around six billion years’ time all that will remain is this dense core, giving off only residual heat.

Because of the violence of this puffing up and collapsing process, the environments around white dwarfs aren’t very hospitable places for planets. Only a few planet-like objects have been discovered orbiting white dwarfs, though researchers looking at the amount of metal found in white dwarfs suggest that planets may be able to survive the red dwarf phase.

These planets would be tricky to detect because of the dim light given off by white dwarfs, so there could be many of these planets out there, but they are hard for us to spot.

Researchers using James Webb, however, have evidence of what appears to be two giant exoplanets orbiting white dwarfs. They took direct images using Webb’s MIRI instrument, which was sensitive enough to see what appear to be planets even though it doesn’t have a coronagraph — a special type of shade used to block out light from a star.

“The sensitivity and resolution of MIRI along with the light-gathering power of JWST have made it possible to image previously unseen middle-aged giant planets orbiting nearby stars, all without a coronagraph,” the authors wrote in their paper describing the research.

The two white dwarfs and their candidate planets. The object in the upper-left corner of the top row of images is a galaxy.
The two white dwarfs and their candidate planets. The object in the upper-left corner of the top row of images is a galaxy. Mullally et al. 2024

These potential exoplanets are particularly interesting as they give a preview of what could happen to the giant planets in our solar system, like Jupiter and Saturn, in billions of years’ time.”These candidates would represent the oldest directly imaged planets outside our own solar system, and in many ways are more like the planets in our outer solar system than ever discovered before,” the authors write.

The research is published in The Astrophysical Journal Letters.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb snaps a stunning stellar nursery in a nearby satellite galaxy
This image from the NASA/ESA/CSA James Webb Space Telescope features an H II region in the Large Magellanic Cloud (LMC), a satellite galaxy of our Milky Way. This nebula, known as N79, is a region of interstellar atomic hydrogen that is ionised, captured here by Webb’s Mid-InfraRed Instrument (MIRI).

A stunning new image from the James Webb Space Telescope shows a star-forming region in the nearby galaxy of the Large Magellanic Cloud. Our Milky Way galaxy has a number of satellite galaxies, which are smaller galaxies gravitationally bound to our own, the largest of which is the Large Magellanic Cloud or LMC.

The image was taken using Webb's Mid-Infrared Instrument or MIRI, which looks at slightly longer wavelengths than its other three instruments which operate in the near-infrared. That means MIRI is well suited to study things like the warm dust and gas found in this region in a nebula called N79.

Read more
James Webb Space Telescope celebrated on new stamps
Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024.

Two new stamps celebrating the James Webb Space Telescope, issued by the USPS in January 2024. USPS

Beautiful images captured by the James Webb Space Telescope have landed on a new set of stamps issued this week by the U.S. Postal Service (USPS).

Read more
Astronomers discover extremely hot exoplanet with ‘lava hemisphere’
Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old. It's also the closest discovered Earth-sized planet this young, at about 400 million years old.

Astronomers have discovered an Earth-sized exoplanet with an unusually extreme climate where one half of the planet is thought to be covered in lava. The planet HD 63433 d is tidally locked, meaning one side of it always faces its star while the other half always faces out into space, creating a huge difference in temperatures between the planet's two faces.

Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old.  NASA/Ames/JPL-Caltech/T. Pyle

Read more