Skip to main content

Why playing Marvel’s Spider-Man on an AMD GPU is such a disappointment

I’ve been singing the praises of AMD’s FSR 2.0 (FidelityFX Super Resolution 2.0) since I first saw it in DeathloopIt’s a great performance-boosting tool, and going into testing of Marvel’s Spider-Man PC port, I was expecting to see it close the gap between playing the game on an AMD GPU versus Nvidia.

But Marvel’s Spider-Man PC port shows a different side of gaming on AMD — and unfortunately, it’s one that doesn’t look nearly as impressive by comparison.

A litmus test for FSR 2.0

Spider-Man fights the Rhino in Marvel's Spider-Man.
Image used with permission by copyright holder

Marvel’s Spider-Man is a much different FSR 2.0 game. Since launch, five games have FSR 2.0 support: Chernobylite, Deathloop, Farming Simulator 22, God of War, and Tiny Tina’s Wonderlands. Sony’s latest port is a different beast entirely. Not only is it an open-world game with a vast skyline of buildings, it’s also extremely fast.

Get your weekly teardown of the tech behind PC gaming
Check your inbox!

Zipping through the island of Manhattan is as fun as ever on PC, but FSR 2.0 puts a damper on the experience. Every zip forward results in a complete drop in image quality as FSR 2.0 struggles to fill in the missing detail. Pixel peeping is one thing, but there’s a noticeable drop in resolution every time you boost forward while flying around the city. And if there’s anything you’re going to do a lot of in Marvel’s Spider-Man, it’s fly around the city.

Spider-Man flying through the city.
For a brief moment, this is what you’ll see even at 4K with motion blur turned off. Digital Trends

In fairness, this drop is something Nvidia’s own DLSS (Deep Learning Super Sampling) implementation also struggles with in Marvels Spider-Man, too, which you can see in the screenshot below. It’s much less severe than FSR 2.0, though, and it’s tough to spot in motion.

Spider-Man zipping to a rooftop.
DLSS shows some artifacts, particularly around the webs, but they’re not nearly as severe. Image used with permission by copyright holder

FSR 2.0 has proved itself a worthy alternative to DLSS, especially when you factor in the lackluster image quality of FSR 1.0. Marvel’s Spider-Man suggests that it might not be an equal comparison, though. Ever since we saw Temporal Super Resolution (TSR) in Ghostwire TokyoI’ve been ready to move on to general-purpose temporal supersampling that doesn’t require specific hardware. But Marvel’s Spider-Man is a sign that DLSS still has an edge in some cases.

DLSS, FSR 2.0, and developer-made tools like IGTI in Spider-Man are all based around temporal (time-based) data. Previous frames provide the information necessary for the supersampling in upcoming frames.

Lower image quality is a side of AMD’s supersampling tool we haven’t seen yet.

When you’re boosting forward in a game like Spider-Man, though, there’s just not enough detail, leading to the drop off in resolution (or what you might call temporal artifacts). FSR 2.0’s set algorithm can’t keep up with these boosts, while DLSS seems able to extract more detail with its machine learning backbone.

That doesn’t mean you should throw out FSR 2.0. Marvel’s Spider-Man is a litmus test, and it’s pushing FSR 2.0 to its limits. FSR 2.0 is still incredibly impressive, and in most games, it’s just as good as DLSS. But, there may be downsides in image quality in rare cases, which is a side of AMD’s latest supersampling tool we haven’t seen yet.

The upsides of machine learning

Although TSR and FSR 2.0 are remarkably close to DLSS in terms of image quality, Nvidia’s A.I.-driven tech still has advantages. Marvel’s Spider-Man exposes that, not with DLSS itself, but with the newer Deep Learning Anti-Aliasing (DLAA).

Anti-aliasing comparison in Marvel's Spider-Man.
Sony Interactive Entertainment

DLAA is basically DLSS  with the upscaling removed. It has the same backbone as DLSS, but the game runs at the native resolution of your monitor. It’s supposed to make a native image sharper, not make a lower resolution image look like it’s native. And as you can see in the screenshot above, DLAA makes a pretty big difference.

This is something that hasn’t been done with algorithm-based anti-aliasing so far, adding more evidence that Nvidia’s insistence on machine learning isn’t all hot air.

Still a strong performer

Performance for supersampling tools in Marvel's Spider-Man.
Image used with permission by copyright holder

If you’re picking up Marvel’s Spider-Man, you have three options for a performance boost: DLSS, FSR 2.0, and Isomniac’s own IGTI. Isomniac’s tool is actually behind the game’s built-in dynamic resolution option, but the developer decided to expose the setting on PC even if you don’t want to use dynamic resolution. That’s great.

FSR 2.0 may struggle with the speed of Spider-Man, but it still puts up numbers. In fact, this is the first time I’ve seen it clearly beat DLSS (if only by a bit).

IGTI provides the best performance, but it’s not worth the trade-off in image quality. You can see all of the tools side-by-side with their Ultra Performance presets below, and IGTI is by far the worst.

Upscaling comparison in Marvel's Spider-Man.
Image used with permission by copyright holder

Otherwise, the three tools are tight. From Quality to Ultra Performance presets, they’re all within a couple of frames of each other. IGTI may be similar to FSR 1.0 in image quality, and FSR 2.0 may struggle with fast motion in Marvel’s Spider-Man. But there’s no denying that players are spoiled with performance-boosting options that aren’t always present in PC ports.

Prompting an update

Peter Parker hanging on a building in Marvel's Spider-Man.
Image used with permission by copyright holder

Marvel’s Spider-Man pushes FSR 2.0 to its limits, and we’re finally seeing the supersampling tool reach that wall. During my testing period, Insomniac actually patched FSR 2.0 support to improve image quality, and there’s still more work to be done. This might be a sign that adding FSR 2.0 to a game might not be as straightforward as we thought for certain games.

Hopefully, AMD will continue to refine its algorithm to handle intense motion such as what Marvel’s Spider-Man imposes. There’s no denying that FSR 2.0 is an extremely impressive tool that finally puts some heat on DLSS. But it’s not perfect, and the relatively slow adoption rate means we haven’t seen it under pressure in a wide range of games.

If you have an Nvidia GPU, I recommend using DLSS. If you don’t, FSR 2.0 is still a solid option — just try to aim for the higher fidelity performance modes.

As I wrote about in my previous ReSpec entry, FSR 2.0 still has amazing potential, and Marvel’s Spider-Man doesn’t change that. But this port pushes FSR 2.0 to its limits and shows where there is still work to be done.

This article is part of ReSpec – an ongoing biweekly column that includes discussions, advice, and in-depth reporting on the tech behind PC gaming.

Editors' Recommendations

Jacob Roach
Lead Reporter, PC Hardware
Jacob Roach is the lead reporter for PC hardware at Digital Trends. In addition to covering the latest PC components, from…
The success of AMD’s FSR 3 hinges on this one feature
AMD's RX 7900 XTX installed in a PC.

AMD finally shared more details on its FidelityFX Super Resolution 3 (FSR 3) this week, and it's exactly what everyone was asking for. It supports frame generation, and it works across GPUs from AMD and Nvidia. The company is even releasing a driver-based version of its Fluid Motion Frames tech, potentially enabling game support for thousands of titles. It's all good stuff.

But a big question remains: How is AMD going to deal with latency?

Read more
Why I leave Nvidia’s game-changing tech off in most games
Ratchet and Clank Rift Apart running on the Samsung Odyssey OLED G8.

Nvidia's most recent graphics cards have increasingly relied on Deep Learning Super Sampling (DLSS) 3 to find their value. GPUs like the RTX 4070 Ti and RTX 4060 Ti aren't impressive on their own, but factor DLSS 3 into the buying decision, and they start to become attractive. If you look at Nvidia's overall strategy for this generation of chips, it looks like the company has started selling DLSS, not graphics cards.

It's not hard to see why DLSS 3 is so important. It makes the impossible possible, like path tracing in Cyberpunk 2077, and it helps multiply frame rates far beyond what should be possible in games like Portal RTX. But now that we finally have DLSS 3 in more games and the party trick status has faded away, I've left Frame Generation off in most games. Here's why.
How DLSS 3 works

Read more
It’s time to stop trying to play games without an SSD
stop trying to play games without an ssd dt respec

Everyone owes Sony an apology. When the PS5 was announced and Ratchet and Clank: Rift Apart was shown off as exclusive for the platform, there was a barrage of finger-pointing at Sony over the game's next-gen exclusive status. The argument from Sony was that the game required the PS5's world-class storage interface, and anything less simply wouldn't work.

Now that the game is available on PC, I can see exactly what Sony was referencing. As you can see from Digital Foundry's first look at the game, it simply doesn't work on the PS4's slow, 5,400RPM hard drive.

Read more