Skip to main content

Meet the tech that revealed a hidden chamber inside Egypt’s Great Pyramid

By now, there’s a pretty good chance you’ve heard about the recent discovery of a large hidden chamber in the Great Pyramid of Giza, Egypt. But how exactly did the scientists responsible discover an area that had consistently eluded researchers and other explorers investigating the oldest of the Seven Wonders of the Ancient World? The answer involves some cutting edge particle physics, computer modeling, and a whole lot of math…

What exactly has been achieved here?

As described in a new paper published in Nature, what the Japanese and French research team have discovered is a large secret space hidden within the Great Pyramid of Giza. This space is located above a large 100-foot long room called the Grand Gallery, and is comparable in size. Up until now, no-one was aware of the existence of this space. It is the first major internal structural discovery in the Great Pyramid since the 19th century.

Using a technique called “muon tomography,” the scientists were able to map it out without causing any damage. This is a substantially different approach to the British Egyptologists of the early 1800s, who frequently “investigated” pyramids by using gunpowder to gain access to different sections that had been sealed off.

Next, the researchers want to explore the space in more detail by using tiny flying drones, although this will take time to achieve.

What are muons?

Earth is constantly bombarded with particles, which pass harmlessly through our bodies. A large number of these particles are called muons, which hit Earth’s surface at a rate of approximately 1 per square centimeter each minute of the day. Muons are elementary particles similar to electrons, but don’t lose as much energy when they travel, making them able to penetrate more deeply than other forms of radiation.

They were discovered by American physicists Carl D. Anderson and Seth Neddermeyer in 1936, as part of the pair’s studies into cosmic radiation. Muons can be detected based on the fact that their movement through gas ionizes the gas molecules. This was successfully demonstrated in 1937 through an experiment known as the “cloud chamber,” in which supersaturated vapor in a sealed environment is used to visualize ionizing radiation.

So how do you use them to scan for objects?

Muons are able to penetrate dense materials, such as meters of rock or even steel, more deeply than other types of radiation. Muon Scattering Tomography (MST) is one way of harnessing this ability by using it to peer through much thicker materials than would be possible using x-ray based tomography techniques such as computed tomography (CT) scanning. MST works by scattering the negatively-charged muon particles, and then observing the way they interact with and deflect off other materials.

scanpyramids
scanpyramids

While they are able to pass through many, they can also be deflected by heavy elements such as uranium, or metals like lead. By using electrodes to collect the signal made by the scattered muons, and then applying some clever geometry and statistical models to measure how they are deflected, it’s possible to work out their trajectory with a high level of accuracy. This allows researchers to build up three-dimensional models of hidden objects, both in terms of shape and material.

Is this the first time that Muon Scattering Tomography has been used?

It’s not. The use of something called muon transmission radiography was actually used back in the late 1960s in a not dissimilar way to look for hidden chambers in the Pyramid of Chephren in Giza. (Check out this 1970 paper, “Search for Hidden Chambers in the Pyramids.”)

The development of Muon Scattering Tomography as an imaging tool, however, is far more recent — and dates back to Los Alamos National Laboratory research in 2003. Since then, it has been used for multiple applications. In notable recent use-cases, it was employed by Toshiba for analyzing the reactor cores at the Fukushima nuclear complex. A company called Decision Sciences International Corporation has also used muon tomography in a scanner for searching for explosives, contraband material, and more, and then producing a 3D image of what has been scanned.

A similar form of muon tomography has additionally been used as a way of imaging magma chambers in volcanos to predict eruptions, and for discovering hidden tunnels inside the Bent Pyramid, named as a result of its unusual shape.

Editors' Recommendations

Luke Dormehl
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
Why AI will never rule the world
image depicting AI, with neurons branching out from humanoid head

Call it the Skynet hypothesis, Artificial General Intelligence, or the advent of the Singularity -- for years, AI experts and non-experts alike have fretted (and, for a small group, celebrated) the idea that artificial intelligence may one day become smarter than humans.

According to the theory, advances in AI -- specifically of the machine learning type that's able to take on new information and rewrite its code accordingly -- will eventually catch up with the wetware of the biological brain. In this interpretation of events, every AI advance from Jeopardy-winning IBM machines to the massive AI language model GPT-3 is taking humanity one step closer to an existential threat. We're literally building our soon-to-be-sentient successors.

Read more
The best hurricane trackers for Android and iOS in 2022
Truck caught in gale force winds.

Hurricane season strikes fear into the hearts of those who live in its direct path, as well as distanced loved ones who worry for their safety. If you've ever sat up all night in a state of panic for a family member caught home alone in the middle of a destructive storm, dependent only on intermittent live TV reports for updates, a hurricane tracker app is a must-have tool. There are plenty of hurricane trackers that can help you prepare for these perilous events, monitor their progress while underway, and assist in recovery. We've gathered the best apps for following storms, predicting storm paths, and delivering on-the-ground advice for shelter and emergency services. Most are free to download and are ad-supported. Premium versions remove ads and add additional features.

You may lose power during a storm, so consider purchasing a portable power source,  just in case. We have a few handy suggestions for some of the best portable generators and power stations available. 

Read more
Don’t buy the Meta Quest Pro for gaming. It’s a metaverse headset first
Meta Quest Pro enables 3D modeling in mixed reality.

Last week’s Meta Connect started off promising on the gaming front. Viewers got release dates for Iron Man VR, an upcoming Quest game that was previously a PS VR exclusive, as well as Among Us VR. Meta, which owns Facebook, also announced that it was acquiring three major VR game studios -- Armature Studio, Camouflaj Team, and Twisted Pixel -- although we don’t know what they’re working on just yet.

Unfortunately, that’s where the Meta Connect's gaming section mostly ended. Besides tiny glimpses and a look into fitness, video games were not the show's focus. Instead, CEO Mark Zuckerberg wanted to focus on what seemed to be his company’s real vision of VR's future, which involves a lot of legs and a lot of work with the Quest Pro, a mixed reality headset that'll cost a whopping $1,500.

Read more