Skip to main content

Open-Source Leg: The quest to create a bionic limb that anyone can build

Promotional image for Tech For Change. Person standing on solar panel looking at sunset.
This story is part of Tech for Change: an ongoing series in which we shine a spotlight on positive uses of technology, and showcase how they're helping to make the world a better place.

If you wanted to cover a large distance and had the world’s best sprinters at your disposal, would you have them run against each other or work together in a relay? That, in essence, is the problem Elliott Rouse, a biomedical engineer and director of the Neurobionics Lab at the University of Michigan, Ann Arbor, has been grappling with for the best several years.

Rouse, an engineer, is one of many working to develop a control system for bionic legs, artificial limbs that use various signals from the wearer to act and move like biological limbs.

Open-source bionic leg aims to rapidly advance prosthetics

“Probably the biggest challenge to creating a robotic leg is the controller that’s involved, telling them what to do,” Rouse told Digital Trends. “Every time the wearer takes a step, a step needs to be initiated. And when they switch, the leg needs to know their activity has changed and move to accommodate that different activity. If it makes a mistake, the person could get very, very injured — perhaps falling down some stairs, for example. There are talented people around the world studying these control challenges. They invest years of their time and hundreds of thousands of dollars building a robotic leg. It’s the way things have been since this field began.”

Recommended Videos

Promoting collaboration

Only, according to Rouse, that’s a broken system. It’s understandable that competing high-tech firms hunker down in secrecy when they’re developing the Next Big Thing they hope will sell a gajillion units and add another few hundred billion dollars or more to their market cap. But it’s less understandable when research institutes waste brilliant minds by getting them to solve the same problems that other universities are solving as well. Heck, even once sworn enemies Apple and Google work together when the stakes are high enough.

“The academic system isn’t super good at fostering collaborative research,” Rouse admitted. “As a professor, I have a job to do where I’m measured on certain things like federal funding, grants that are published, and students that I mentor. If you look at the way the academic system establishes the benchmark for faculty in research labs, collaboration is [actually kind of] de-emphasized.”

Joseph Xu/Michigan Engineering, Communications & Marketing

When it comes to control systems for bionic limbs, the problem is that, in order to even be able to start developing control systems, individual research labs around the world first have to build the underlying hardware. To return to the earlier analogy, that’s worse than, say, Apple and Samsung developing competing smartphones in top-secret; it would be more like Apple and Samsung having to build their own computer operating systems from scratch before starting to design their next-generation smartphone.

This is where Rouse’s project, the Open-Source Leg, comes into play. As the researchers behind it explain on a dedicated webpage: “The overarching purpose of this project is to unite a fragmented fieldResearch in prosthetic hardware design, prosthetic control, and amputee biomechanics is currently done in silos. Each researcher develops their own robotic leg system on which to test their control strategies or biomechanical hypotheses. This may be successful in the short term since each researcher produces publications and furthers knowledge. However, in the long term, this fragmented research approach hinders results from impacting the lives of individuals with disabilities — culminating in an overarching failure of the field to truly have the impact that motivated it.”

Here comes the bionic leg

The Open-Source Leg is, as its name suggests, an open-source bionic leg that could become the ubiquitous hardware system for facilitating growth in the area of prostheses control. The design is simple (meaning easily assembled), portable (lightweight and powered by onboard batteries), economical (it costs between $10,000 and $25,000, compared to the $100,000-plus commercially available powered prosthetics), scalable and customizable. Detailed instructions are available online to follow, and Rouse and his colleagues will even build them and ship them out to researchers when creating one themselves is not possible.

Joseph Xu/Michigan Engineering, Communications & Marketing

In the process, the project seeks to achieve three goals. The first of these is to identify an electromechanical design that can be used for low-cost, high-performance, open-source robotic knee and ankle systems. Secondly, to understand how separate prosthesis control strategies can be combined in order to benefit amputee gait. Finally, the Open-Source Leg project wants to validate its proposed open-source system as a tool for research on prosthesis control. If these research goals can be met, it could turn out to be the game-changer its creators hope it will be.

“In my lifetime, we’re going to see bionic limbs that can use neural information, either on the cortical or peripheral nerve level, to tell us gross movement,” Rouse said. “That will give us control without the need for onboard sensors.” This revolution, he said, is already happening. While fine-grain dexterous movement could take longer than this, it is not necessarily a sci-fi dream that is many lifetimes away from happening.

And if people can figure out how to work together, it could be here a lot quicker.

Luke Dormehl
Former Digital Trends Contributor
I'm a UK-based tech writer covering Cool Tech at Digital Trends. I've also written for Fast Company, Wired, the Guardian…
EVs top gas cars in German reliability report — but one weak spot won’t quit
future electric cars 2021 volkswagen id4 official 32

Electric vehicles are quietly crushing old stereotypes about being delicate or unreliable, and the data now backs it up in a big way. According to Germany’s ADAC — Europe’s largest roadside assistance provider — EVs are actually more reliable than their internal combustion engine (ICE) counterparts. And this isn’t just a small study — it’s based on a staggering 3.6 million breakdowns in 2024 alone.
For cars registered between 2020 and 2022, EVs averaged just 4.2 breakdowns per 1,000 vehicles, while ICE cars saw more than double that, at 10.4 per 1,000. Even with more EVs hitting the road, they only accounted for 1.2% of total breakdowns — a big win for the battery-powered crowd.
Among standout performers, some cars delivered exceptionally low breakdown rates. The Audi A4 clocked in at just 0.4 breakdowns per 1,000 vehicles for 2022 models, with Tesla’s Model 3 right behind at 0.5. The Volkswagen ID.4, another popular EV, also impressed with a rate of 1.0 – as did the Mitsubishi Eclipse Cross at 1.3. On the flip side, there were some major outliers: the Hyundai Ioniq 5 showed a surprisingly high 22.4 breakdowns per 1,000 vehicles for its 2022 models, while the hybrid Toyota RAV4 posted 18.4.
Interestingly, the most common issue for both EVs and ICE vehicles was exactly the same: the humble 12-volt battery. Despite all the futuristic tech in EVs, it’s this old-school component that causes 50% of all EV breakdowns, and 45% for gas-powered cars. Meanwhile, EVs shine in categories like engine management and electrical systems — areas where traditional engines are more complex and failure-prone.
But EVs aren’t completely flawless. They had a slightly higher rate of tire-related issues — 1.3 breakdowns per 1,000 vehicles compared to 0.9 for ICE cars. That could be due to their heavier weight and high torque, which can accelerate tire wear. Still, this trend is fading in newer EVs as tire tech and vehicle calibration improve.
Now, zooming out beyond Germany: a 2024 Consumer Reports study in the U.S. painted a different picture. It found that EVs, especially newer models, had more reliability issues than gas cars, citing tech glitches and inconsistent build quality. But it’s worth noting that the American data focused more on owner-reported problems, not just roadside breakdowns.
So, while the long-term story is still developing, especially for older EVs, Germany’s data suggests that when it comes to simply keeping you on the road, EVs are pulling ahead — quietly, efficiently, and with far fewer breakdowns than you might expect.

Read more
You can now lease a Hyundai EV on Amazon—and snag that $7,500 tax credit
amazon autos hyundai evs lease ioniq 6 n line seoul mobility show 2025 mk08

Amazon has changed how we shop for just about everything—from books to furniture to groceries. Now, it’s transforming the way we lease cars. Through Amazon Autos, you can now lease a brand-new Hyundai entirely online—and even better, you’ll qualify for the full $7,500 federal tax credit if you choose an electric model like the Ioniq 5, Ioniq 6, or Kona EV.
Here’s why that matters: As of January 2025, Hyundai’s EVs no longer qualify for the tax credit if you buy them outright, due to strict federal rules about battery sourcing and final assembly. But when you lease, the vehicle is technically owned by the leasing company (Hyundai Capital), which allows it to be classified as a “commercial vehicle” under U.S. tax law—making it eligible for the credit. That savings is typically passed on to you in the form of lower lease payments.
With Amazon’s new setup, you can browse Hyundai’s EV inventory, secure financing, trade in your current vehicle, and schedule a pickup—all without leaving the Amazon ecosystem.
It’s available in 68 markets across the U.S., and pricing is fully transparent—no hidden fees or haggling. While Hyundai is so far the only automaker fully participating, more are expected to join over time.
Pioneered by the likes of Tesla, purchasing or leasing vehicles online has been a growing trend since the Covid pandemic.
A 2024 study by iVendi found that 74% of car buyers expect to use some form of online process for their next purchase. In fact, 75% said online buying met or exceeded expectations, with convenience and access to information cited as top reasons. The 2024 EY Mobility Consumer Index echoed this trend, reporting that 25% of consumers now plan to buy their next vehicle online—up from 18% in 2021. Even among those who still prefer to finalize the purchase at a dealership, 87% use online tools for research beforehand.
Meanwhile, Deloitte’s 2025 Global Automotive Consumer Study reveals that while 86% of U.S. consumers still want to test-drive a vehicle in person, digital tools are now a critical part of the buying journey.
Bottom line? Amazon is making it easier than ever to lease an EV and claim that tax credit—without the dealership hassle. If you're ready to plug in, it might be time to add to cart.

Read more
Humanoid robots race against humans at unique half-marathon in China
A humanoid robot running in a half marathon.

You may have seen robots dancing like the music icon Mick Jagger, doing parkour, or even painting on a canvas. Tesla’s Optimus humanoid robot is eagerly anticipated, while Google and Meta are also planning to enter the field. The competition in the East, however, is on a different level altogether.

China just put humanoid robots to the test in the world’s first race of its kind, where they ran alongside humans in a half-marathon. A total of 21 robots lined up for the event in the Yizhuang half-marathon, following a long spell of supervised learning on roads. 

Read more