Skip to main content

Saturn didn’t always have rings, according to new analysis of Cassini data

Saturn’s rings are younger than previously believed and could have been formed in the relatively recent past, according to new data gathered from the Cassini mission.

The Cassini spacecraft that was orbiting Saturn is no more, but before it expired it took a loop between the planet and its rings, acting as a gravity probe and uncovering data about the composition of the rings. By looking at the strength of the gravitational pull of the rings, scientists were able to estimate the amount of mass they contained, which turns out to be about 40 percent of the mass of Saturn’s moon Mimas. For reference, Mimas is 2,000 times smaller than Earth’s moon, meaning there is relatively little material in Saturn’s rings

Artist’s concept of the Cassini spacecraft shown against a real photo of Saturn and its rings as Cassini crossed the ring plane. NASA/JPL-Caltech

This indicates that Saturn’s distinctive rings are a relatively recent development as ring mass is correlated with ring age, meaning that the rings are certainly less than 100 million years old and perhaps as young as 10 million years old. Scientists had debated whether the rings were formed from icy debris at the same time as the planet, 4.5 billion years ago, or whether the rings were younger and were formed when Saturn’s gravity captured a comet or a Kuiper Belt object and pulverized it into rocks which orbited the planet. Now the evidence is in that Saturn was ring-less for a considerable time after its formation, and the rings were a later addition.

Scientists also used the data to understand Saturn’s surface and interior composition. They discovered that there were deep flowing winds in Saturn’s atmosphere, which were impossible to observe from space and which explain the gravitational fluctuations between planet and rings. The surface clouds around the equator of Saturn rotate four percent faster than the deep layer of clouds, which is around 6,000 miles deep.

“The discovery of deeply rotating layers is a surprising revelation about the internal structure of the planet,” said Linda Spilker, Cassini project scientist at NASA’s Jet Propulsion Laboratory in a statement. “The question is what causes the more rapidly rotating part of the atmosphere to go so deep and what does that tell us about Saturn’s interior.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA gives green light to mission to send car-sized drone to Saturn moon
An artist's impression of NASA's Dragonfly drone.

NASA’s Mars helicopter mission is now well and truly over, but following in its footsteps is an even more complex flying machine that's heading for Saturn’s largest moon.

The space agency on Tuesday gave the green light to the Dragonfly drone mission to Titan. The announcement means the design of the eight-rotor aircraft can now move toward completion, followed by construction and a testing regime to confirm the operability of the machine and its science instruments.

Read more
Hubble discovers over 1,000 new asteroids thanks to photobombing
This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern.

The Hubble Space Telescope is most famous for taking images of far-off galaxies, but it is also useful for studying objects right here in our own solar system. Recently, researchers have gotten creative and found a way to use Hubble data to detect previously unknown asteroids that are mostly located in the main asteroid belt between Mars and Jupiter.

The researchers discovered an incredible 1,031 new asteroids, many of them small and difficult to detect with several hundred of them less than a kilometer in size. To identify the asteroids, the researchers combed through a total of 37,000 Hubble images taken over a 19-year time period, identifying the tell-tale trail of asteroids zipping past Hubble's camera.

Read more
Biggest stellar black hole to date discovered in our galaxy
Astronomers have found the most massive stellar black hole in our galaxy, thanks to the wobbling motion it induces on a companion star. This artist’s impression shows the orbits of both the star and the black hole, dubbed Gaia BH3, around their common centre of mass. This wobbling was measured over several years with the European Space Agency’s Gaia mission. Additional data from other telescopes, including ESO’s Very Large Telescope in Chile, confirmed that the mass of this black hole is 33 times that of our Sun. The chemical composition of the companion star suggests that the black hole was formed after the collapse of a massive star with very few heavy elements, or metals, as predicted by theory.

Black holes generally come in two sizes: big and really big. As they are so dense, they are measured in terms of mass rather than size, and astronomers call these two groups of stellar mass black holes (as in, equivalent to the mass of the sun) and supermassive black holes. Why there are hardly any intermediate-mass black holes is an ongoing question in astronomy research, and the most massive stellar mass black holes known in our galaxy tend to be up to 20 times the mass of the sun. Recently, though, astronomers have discovered a much larger stellar mass black hole that weighs 33 times the mass of the sun.

Not only is this new discovery the most massive stellar black hole discovered in our galaxy to date but it is also surprisingly close to us. Located just 2,000 light-years away, it is one of the closest known black holes to Earth.

Read more