Skip to main content

DART asteroid impact imaged by Webb and Hubble space telescopes

Earlier this week NASA successfully crashed its DART spacecraft into an asteroid around seven million miles from Earth.

The mission was a test to see if the force of such an impact can alter the course of an asteroid’s flight. If it can — and we’re waiting for the results to come in — then we can use the technology for planetary defense if we ever spot a hazardous asteroid heading straight for Earth.

Recommended Videos

A video stream from DART transmitted astonishingly clear images of the spacecraft’s final moments before crashing into the Dimorphos asteroid at 14,000 mph.

On Thursday, we learned that two of NASA’s most prominent space telescopes, Webb and Hubble, also had their cameras trained on the big event.

It turns out this was the first time Webb and Hubble were used to simultaneously observe the same celestial target, and both captured the moment of impact.

DART, you rocked out there. 🪨#ICYMI, Webb and @NASAHubble both captured the effects of #DARTMission colliding with an asteroid as a test of planetary defense. This is the first time both telescopes observed the same target at the same time: https://t.co/CuVzJXyK2F pic.twitter.com/QvgoqBQd8r

— NASA Webb Telescope (@NASAWebb) September 29, 2022

The Hubble team posted a short clip comprising three images showing a flash just after DART smashed into the space rock at high speed. NASA said the footage spans from 22 minutes after impact to just over eight hours after the collision occurred.

Check out Hubble’s “after” shots from #DARTMission impact!

Earlier this week, @NASA intentionally crashed a spacecraft into Dimorphos, a non-threatening asteroid moonlet in the double-asteroid system of Didymos, in a test of planetary defense: https://t.co/pe2qeFDYoS pic.twitter.com/VQ5X1pQlEy

— Hubble (@NASAHubble) September 29, 2022

The different colors in the images are down to Webb and Hubble capturing the impact in different wavelengths of light — Webb in infrared and Hubble in visible. The contrasting data, together with data from ground-based observatories, will help scientists understand how effectively an impact of this nature can alter an asteroid’s orbit, and also reveal more about the nature of the surface of Dimorphos and how the collision affected it.

“Webb and Hubble show what we’ve always known to be true at NASA: We learn more when we work together,” NASA chief Bill Nelson said on Thursday. “For the first time, Webb and Hubble have simultaneously captured imagery from the same target in the cosmos — an asteroid that was impacted by a spacecraft after a seven-million-mile journey. All of humanity eagerly awaits the discoveries to come from Webb, Hubble, and our ground-based telescopes, about the DART mission and beyond.”

NASA said that the coordinated Hubble and Webb observations are “more than just an operational milestone for each telescope,” explaining that combining the capabilities of the two space-based observatories will also help it to explore important science questions linked to the makeup and history of our solar system.

NASA’s Hubble telescope has been in orbit about 335 miles above Earth since 1990, sending back incredible imagery as part of its explorations. Webb, the most advanced space telescope ever built, launched at the end of last year and is now located around a million miles from Earth, where it’s also producing some magnificent work.

As it continues its groundbreaking studies of deep space, Webb will also keep an eye on Dimorphos with its Mid-Infrared Instrument and Near-Infrared Spectrograph technology in a bid to learn more about the chemical makeup of the asteroid.

Trevor Mogg
Contributing Editor
Not so many moons ago, Trevor moved from one tea-loving island nation that drives on the left (Britain) to another (Japan)…
James Webb to join observations of asteroid that could strike Earth in 2032
Artist's impression of an asteroid. This image is not intended to reflect the characteristics of any specific known asteroid.

If you've been following the story of an asteroid that could hit Earth in 2032, there's bad news and good news. The bad news is that the likelihood of the asteroid striking the Earth has now risen slightly, but the good news is that astronomers are using tools like the James Webb Space Telescope to track it in more detail.

The probability that Asteroid 2024 YR4 will impact Earth on December 22, 2032 has now risen to 2.3%, according to NASA. The asteroid is being observed by ground-bases telescopes that are part of the International Asteroid Warning Network, which will be following the it for as long as it continues to be visible -- which should be through April this year. After that, it will be too faint to observe until 2028.

Read more
Gorgeous James Webb Space Telescope images land on new U.S. stamps
A new USPS stamp featuring an image taken by the James Webb Space Telescope.

In a mark of its huge impact on the world of science and astronomy, NASA’s James Webb Space Telescope finds itself once again as the inspiration for a new set of stamps from the United States Postal Service (USPS).

Two new stamps issued this month feature iconic images captured by Webb, one of them showing a spiral galaxy called NGC 628. “Webb’s observations combine near- and mid-infrared light to reveal glowing gas and dust in stark shades of orange and red, as well as finer spiral shapes with the appearance of jagged edges,” NASA said of the image (below), adding that the galaxy is located 32 million light-years away in the Pisces constellation.

Read more
Hubble snaps another gorgeous image of the Tarantula Nebula
This NASA/ESA Hubble Space Telescope image features a dusty yet sparkling scene from one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud. The Large Magellanic Cloud is a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa.

This gorgeous new image from the Hubble Space Telescope shows a bustling nearby star forming region called the Tarantula Nebula. Given its name due to its complex, web-like internal structure, this nebula is located in a satellite galaxy of the Milky Way called the Large Magellanic Cloud and is often studied by astronomers researching star formation and evolution.

This new image shows the edges of the nebula, further out from its center. In the middle of the nebula are enormous stars that are as much as 200 times the mass of the sun, but here on the outskirts the view is calmer.

Read more