Skip to main content

Hubble sees the dramatic collision of NASA’s DART spacecraft and an asteroid

Last year NASA tested out a new method for defending the planet from incoming objects by crashing a spacecraft into an asteroid. Recently, further analysis of data from the impact has shown more about what occurred during and after the impact, and how effective it was at changing the orbit of the asteroid.

The Hubble Space Telescope captured a series of images showing the aftermath of the impact, which have been put together into a video showing the bright flash of the impact and the emerging plume of material sent up from the asteroid:

Related Videos
Time-Lapse Video of Didymos-Dimorphos System

The data from Hubble is also shown in the form of three images. The first shows the scene around two hours after impact, with a cone of material called ejecta made up of around 1,000 tons of dust. The second image from 17 hours after impact shows how this cone of material interacts with the gravity of the other asteroid in the pair, called Didymos. Finally, the third image shows how the ejecta is pulled into a tail shape due to the effects of sunlight.

These three panels capture the breakup of the asteroid Dimorphos when it was deliberately hit by NASA's 1,200-pound Double Asteroid Redirection Test (DART) mission spacecraft on September 26, 2022. Hubble Space Telescope had a ringside view of the space demolition derby.
These three panels capture the breakup of the asteroid Dimorphos when it was deliberately hit by NASA’s 1,200-pound Double Asteroid Redirection Test (DART) mission spacecraft on September 26, 2022. Hubble Space Telescope had a ringside view of the space demolition derby. SCIENCE: NASA, ESA, STScI, Jian-Yang Li (PSI) IMAGE PROCESSING: Joseph DePasquale (STScI)

This view shows how the effects of the impact on the asteroid are dependent on it being a part of a binary system: two asteroids orbiting each other. “The DART impact happened in a binary asteroid system,” said lead author of a study on the ejecta, Jian-Yang Li of the Planetary Science Institute, in a statement. “We’ve never witnessed an object collide with an asteroid in a binary asteroid system before in real time, and it’s really surprising. I think it’s fantastic. Too much stuff is going on here. It’s going to take some time to figure out.”

More analysis of the data from the impact has been reported by NASA. The agency shared in an update that the impact altered the orbit of Dimorphos by 33 minutes, showing that this method can be effective at changing an asteroid’s trajectory. That means that if such an asteroid were ever to threaten Earth, we’d have an idea of how to deflect it — as long as it was spotted in time as several years of preparation are required, and provided it was on a similar scale of size to Dimorphos, which is around half a mile across.

“I cheered when DART slammed head-on into the asteroid for the world’s first planetary defense technology demonstration, and that was just the start,” said Nicola Fox, associate administrator for NASA’s Science Mission Directorate, in the update. “These findings add to our fundamental understanding of asteroids and build a foundation for how humanity can defend Earth from a potentially hazardous asteroid by altering its course.”

Editors' Recommendations

Satellites like SpaceX’s Starlink are disrupting Hubble observations
The curving light streak created by an artificial satellite mars an image taken by the Hubble Space Telescope.

Astronomers are once again worried about the effect that satellites like those used by SpaceX for its Starlink service will have on scientific research. A recent study looked at the effect that such satellites were having on observations from the Hubble Space Telescope and found that observations were already being impacted by the number of satellites nearby.

Telescopes like Hubble are particularly vulnerable to interference from satellites because of their location, in an area called low-Earth orbit (LEO). At less than 1,200 miles above the Earth's surface, this region is prime real estate for both scientific projects like Hubble and the International Space Station and for commercial projects like satellite megaconstellations.  While there have been satellites in this region for many years, recently the number of satellites has been rising dramatically, especially due to projects like Starlink which rely on having thousands of satellites in orbit.

Read more
An enormous galaxy cluster warps spacetime in this Hubble image
A massive galaxy cluster in the constellation Cetus dominates the centre of this image from the NASA/ESA Hubble Space Telescope. This image is populated with a serene collection of elliptical and spiral galaxies, but galaxies surrounding the central cluster — which is named SPT-CL J0019-2026 — appear stretched into bright arcs, as if distorted by a gargantuan magnifying glass. This cosmic contortion is called gravitational lensing, and it occurs when a massive object like a galaxy cluster has a sufficiently powerful gravitational field to distort and magnify the light from background objects.

Every week, scientists using the Hubble Space Telescope share an image from this beloved piece of space technology, and this week's image shows a vital astronomical phenomenon in action. While space telescopes can observe very far-off objects if they are bright enough, there is still a lot of the universe that is too far away to observe -- which is why researchers make use of a natural occurrence called gravitational lensing.

Gravitational lensing happens when an object like a galaxy or galaxy cluster has so much mass that it noticeably warps spacetime. Everything with mass bends spacetime somewhat, but usually this effect is so small as to be effectively invisible. But when the object is something with as much mass as a large galaxy or even a collection of galaxies, then this warping can be significant enough for us to observe it.

Read more
Three galaxies are in the process of merging in this Hubble image
A spectacular trio of merging galaxies in the constellation Boötes takes center stage in this image from the NASA/ESA Hubble Space Telescope. These three galaxies are set on a collision course and will eventually merge into a single larger galaxy, distorting one another’s spiral structure through mutual gravitational interaction in the process. An unrelated foreground galaxy appears to float serenely near this scene, and the smudged shapes of much more distant galaxies are visible in the background.

This week's image from the Hubble Space Telescope shows a dramatic collision of three different galaxies. The trio, located in the Boötes constellation, are in the process of merging and will eventually form one single large galaxy.

A spectacular trio of merging galaxies in the constellation Boötes takes center stage in this image from the NASA/ESA Hubble Space Telescope. These three galaxies are set on a collision course and will eventually merge into a single larger galaxy, distorting one another’s spiral structure through mutual gravitational interaction in the process. An unrelated foreground galaxy appears to float serenely near this scene, and the smudged shapes of much more distant galaxies are visible in the background. ESA/Hubble & NASA, M. Sun

Read more