Skip to main content

Tectonic activity on this exoplanet could mean one half is covered in volcanoes

This artist’s illustration represents the possible interior dynamics of the super-Earth exoplanet LHS 3844b. The planet's interior properties and the strong stellar irradiation might lead to a hemispheric tectonic regime.
This artist’s illustration represents the possible interior dynamics of the super-Earth exoplanet LHS 3844b. The planet’s interior properties and the strong stellar irradiation might lead to a hemispheric tectonic regime. Universität Bern / University of Bern, Illustration: Thibaut Roger

As far as we know, the Earth has a unique quality among the planets of the solar system: It is the only planet with plate tectonics, where the crust is made up of plates that float on the mantle. It is thought that this tectonic activity may even be related to the development of life.

Global tectonic activity has never been observed on a planet outside our solar system, but now a new study suggests that exoplanet LHS 3844b has interior flows, carrying material from one side of the planet to the other side.

One reason tectonic activity hasn’t been observed is because it’s difficult to spot from so far away. “Observing signs of tectonic activity is very difficult, because they are usually hidden beneath an atmosphere,” the study’s lead author, Tobias Meier from the Center for Space and Habitability (CSH) at the University of Bern, explained in a statement.

However, this particular planet likely has no atmosphere and has a bunch of other unusual qualities. It orbits close to its star and is tidally locked, meaning the same side always faces the star and remains in daylight. This means the surface there gets extremely hot, reaching nearly 1,500°F on the dayside while the nightside is as cold as -400°F.

This massive difference in temperatures gave the researchers the idea that the interior of the planet might be affected. So they created computer simulations to see how this difference in heat between the two sides would affect the inside of the planet.

“Most simulations showed that there was only upwards flow on one side of the planet and downwards flow on the other. Material therefore flowed from one hemisphere to the other,” Meier said. But the researchers noticed something strange: The direction of the flow was not always the same.

You’d expect material on the hotter dayside to flow upwards, and cooler material on the nightside to sink. But sometimes, the material flowed in the opposite direction. “This initially counter-intuitive result is due to the change in viscosity with temperature: Cold material is stiffer and therefore doesn’t want to bend, break or subduct into the interior. Warm material, however, is less viscous — so even solid rock becomes more mobile when heated — and can readily flow towards the planet’s interior,” co-author Dan Bower at the University of Bern and the NCCR PlanetS explained.

This is different from the type of activity seen in the interior of Earth, but it’s another way that a planet could have materials being exchanged between the interior and the surface.

And it would have weird effects on the planet too: The researchers expect that one side of the planet would be covered in volcanoes, while the other side would have almost none. To try to confirm whether their simulations are correct, the researchers now want to perform more observations such as looking for emissions from these volcanoes.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers discover three exoplanets in final data from Kepler Space Telescope
An artist's concept of the Kepler spacecraft.

The Kepler Space Telescope was retired in 2018 after a nine-year mission that saw it discover an incredible 2,600 confirmed exoplanets, kicking off the modern era of exoplanet research. But now there are three more exoplanets to add to the mission's total, even after the telescope has been dark for the last five years. Astronomers were recently able to use data from the very last observations of Kepler to discover three more planets.

Two of the three exoplanets have been confirmed -- K2-416 b and K2-417 b -- with a third planet, EPIC 246251988 b, remaining an exoplanet candidate. (To be upgraded from exoplanet candidate to confirmed exoplanet, an initial observation has to be verified through observations by two other telescopes.) The planets range from 2.6 times the size of Earth to 4 times the size of Earth, making them small in comparison to most discovered exoplanets.

Read more
Astronomers discover Earth-sized exoplanet covered in volcanoes
Exoplanet LP 791-18 d, illustrated in this artist’s concept, is an Earth-size world about 90 light-years away. A more massive planet in the system, shown as a small blue dot on the right, exerts a gravitational tug that may result in internal heating and volcanic eruptions, like on Jupiter’s moon Io.

Astronomers have discovered an Earth-sized planet that is highly volcanically active -- an unusual finding that means it could possibly support life. The newly discovered planet, LP 791-18d, is thought to be covered in volcanoes and could be as active as Jupiter's moon Io, which is the most volcanically active body in our solar system.

Exoplanet LP 791-18 d, shown in this artist’s concept, is an Earth-size world about 90 light-years away. A more massive planet in the system, shown as a small blue dot on the right, exerts a gravitational tug on the exoplanet that may result in internal heating and volcanic eruptions, like on Jupiter’s moon Io. NASA’s Goddard Space Flight Center/Chris Smith (KRBwyle)

Read more
James Webb telescope gets a view of the ‘white whale’ of exoplanet research
This artist’s concept depicts the planet GJ 1214 b, a “mini-Neptune” with what is likely a steamy, hazy atmosphere. A new study based on observations by NASA’s Webb telescope provides insight into this type of planet, the most common in the galaxy.

Studying other planets is difficult not only because they are so far away, but also because they can have properties that make taking readings much harder. Here in our solar system, we only have scant information about the surface of Venus because its thick atmosphere makes it hard to view. Being 50 light-years away, the planet GJ 1214 b has proved similarly tricky, defying 15 years of attempted observations due to its hazy nature.

But now, the James Webb Space Telescope has been able to peer into the planet's atmosphere for the first time, revealing the secrets of this mysterious place. It's known as a mini-Neptune because it has a thick atmosphere and layers of ice like Neptune. Only around three times the diameter of the Earth, the planet likely has lots of water, but it is located in the atmosphere, not on the surface, due to its high surface temperature.

Read more