Skip to main content

Hubble captures giant galaxy cluster that could help us understand dark matter

This detailed image features Abell 3827, a galaxy cluster that offers a wealth of exciting possibilities for study. Hubble observed it in order to study dark matter, which is one of the greatest puzzles cosmologists face today.
This detailed image features Abell 3827, a galaxy cluster that offers a wealth of exciting possibilities for study. Hubble observed it in order to study dark matter, which is one of the greatest puzzles cosmologists face today. ESA/Hubble & NASA, R. Massey

Dark matter is one of the biggest mysteries in physics today. Based on observations from cosmologists, we know that all the matter we see around us — every proton, electron, and neutron — comprises just a tiny fraction of all the matter that exists in the universe. So what is all this other matter? Physicists theorize it must be a type of particle that we currently can’t directly detect, though we can see its effects. They call this hypothetical particle dark matter.

Studying very large galaxies is helpful in understanding dark matter as we know dark matter clusters around galaxies to form a halo. The gravitational effects of these massive halos are more obvious when the galaxy in question is a large one. So recently, the Hubble Space Telescope captured this image of the enormous galaxy cluster Abell 3827, which creates a strong gravitational lensing effect.

This galaxy cluster was the site of a debate over the nature of dark matter. In 2015, some scientists believed they observed dark matter interacting with other dark matter in this region when they saw a cloud of dark matter which was lagging behind the galaxy it surrounds. This means there would be a type of dark matter particle which is different from the standard view of dark matter, called the Lambda cold dark matter model.

However, this idea was eventually disproved when the same group of scientists made more observations in 2017, adding data from the Atacama Large Millimeter/submillimeter Array as well as the Very Large Telescope’s MUSE instrument to improve their model of the cluster.

This new set of observations “reveals an unusual configuration of strong gravitational lensing in the cluster core, with at least seven lensed images of a single background spiral galaxy,” the scientists wrote. “The new spectroscopic data enable better subtraction of foreground light, and better identification of multiple background images. The inferred distribution of dark matter is consistent with being centered on the galaxies, as expected by [the Lambda cold dark matter model].”

That means that the new data showed dark matter behaving as expected in the traditional view, and did not support the idea of self-interacting dark matter. Scientists continue to study dark matter using tools like the upcoming European Space Agency Euclid telescope to try to understand more about this mysterious phenomenon.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
Euclid mission launches to probe the mysteries of dark matter
This artist’s concept shows the ESA (European Space Agency) Euclid mission in space.

The European Space Agency (ESA) has successfully launched its Euclid space telescope to study the mysteries of dark matter and dark energy. The spacecraft launched from Cape Canaveral in Florida using a SpaceX Falcon 9 rocket, with liftoff at 11:12 a.m. ET (8:12 a.m. PT).

This artist’s concept shows the ESA (European Space Agency) Euclid mission in space. ESA, CC BY-SA 3.0 IGO

Read more
How to watch the Euclid dark matter telescope launch this Saturday
This artist impression shows Euclid leaving Earth and on its way to Sun-Earth Lagrange point L2. This equilibrium point of the Sun-Earth system is located 1.5 million kilometres from Earth in the opposite direction of the Sun. L2 revolves around the Sun along with Earth. During Euclid’s orbit at L2, Euclid’s sunshield always blocks the light from the Sun, Earth and Moon while pointing its telescope towards deep space, ensuring a high level of stability for its instruments.

The astronomy community is about to get a new instrument to probe the mysteries of dark matter, with the launch of the European Space Agency (ESA)'s Euclid telescope this Saturday. Euclid is a highly sophisticated space-based telescope that will observe huge swaths of the sky to create a 3D model of the universe to help elucidate some of the biggest questions in cosmology.

Euclid | Journey to darkness

Read more