Skip to main content

Spooky cobwebbed Hubble image helps investigate dark matter

With Halloween coming up tomorrow, the Hubble Space Telescope team is celebrating by releasing a new Hubble image showing the dark cobwebs of galaxy cluster Abell 611. Located an incredible 3.2 billion light-years away, this view shows hundreds of galaxies that are bound together by gravity into one enormous structure.

Taken using Hubble’s Advanced Camera for Surveys and Wide Field Camera 3 instruments, the image combines both visible light and infrared observations.

Hundreds of small galaxies appear across this view. Their colours vary. Some are shades of orange, while others are white. Most appear as fuzzy ovals, but a few have distinct spiral arms. There are also many thin, long, orange arcs that curve around the centre of the image, where there is a prominent orange glow.
In celebration of Halloween, Hubble brings you this inky image of the galaxy cluster Abell 611, located roughly 3.2 billion light-years from Earth. ESA/Hubble, NASA, P. Kelly, M. Postman, J. Richard, S. Allen

This particular cluster is a favorite target for astronomers in their search to understand a spooky substance: dark matter. A big question in cosmology is why large structures like Abell 611 don’t fly apart, as they don’t seem to contain enough mass to hold themselves together with gravity. The leading explanation is that they do in fact contain much more mass than we can see, and this hypothetical unseen mass is referred to as dark matter.

However, searching for dark matter has proven extremely difficult. Dark matter does not interact with light, making it invisible, and it has never been directly detected. Cosmologists aren’t even sure what form dark matter might take, though many believe it is likely a particle of some kind. Even though we can’t see it directly, its effects on the universe are clear. As well as in places like Abell 611, we see similar effects on a large cosmic scale, in which more mass is required to explain the behavior of galaxies than we can observe.

Abell 611 is particularly useful for studying dark matter, because it has so many massive galaxies appearing close together that it demonstrates many examples of a phenomenon called gravitational lensing. This is where one massive object sits in front of another from our point of view, and the gravity of that intermediate object is so great that it bends spacetime, changing the appearance of the light coming from the background object. This is useful, as the intermediate object can act like a magnifying glass, bending the light from the further away galaxy and letting us see extremely distant objects.

You can see an example of this gravitational lensing in the middle of the image, where light from the galaxy to the left of the center has been smeared out into an arc shape by the mass of the galaxy cluster. As well as helping us see distant objects, the degree of lensing can also be used to work out the mass of the objects involved. When calculated this way, the mass of the cluster is far higher than the observed mass would suggest, supporting the idea that there must be some other unseen material, such as dark matter, filling up the cluster.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
How to watch the Euclid dark matter telescope launch this Saturday
This artist impression shows Euclid leaving Earth and on its way to Sun-Earth Lagrange point L2. This equilibrium point of the Sun-Earth system is located 1.5 million kilometres from Earth in the opposite direction of the Sun. L2 revolves around the Sun along with Earth. During Euclid’s orbit at L2, Euclid’s sunshield always blocks the light from the Sun, Earth and Moon while pointing its telescope towards deep space, ensuring a high level of stability for its instruments.

The astronomy community is about to get a new instrument to probe the mysteries of dark matter, with the launch of the European Space Agency (ESA)'s Euclid telescope this Saturday. Euclid is a highly sophisticated space-based telescope that will observe huge swaths of the sky to create a 3D model of the universe to help elucidate some of the biggest questions in cosmology.

Euclid | Journey to darkness

Read more
Hubble image of the week shows an unusual jellyfish galaxy
The jellyfish galaxy JO206 trails across this image from the NASA/ESA Hubble Space Telescope, showcasing a colorful star-forming disk surrounded by a pale, luminous cloud of dust. A handful of foreground bright stars with crisscross diffraction spikes stands out against an inky black backdrop at the bottom of the image. JO206 lies over 700 million light-years from Earth in the constellation Aquarius.

This week's image from the Hubble Space Telescope shows an unusual type of galaxy named for its aquatic look-alike: a jellyfish.

The jellyfish galaxy JO206 is shown below in an image taken using Hubble's Wide Field Camera 3 instrument. Located 700 million light-years away, in the constellation of Aquarius, this image of the galaxy shows both the bright center of the galaxy and its long tendrils reaching out toward the bottom right. It is these tendrils that give jellyfish galaxies their names, and they are formed through a process called ram pressure stripping.

Read more
Hubble scientists create tool for erasing satellite trails from images
This image captures the streak of an Earth-orbiting artificial satellite crossing Hubble's field of view during an observation of "The Mice" interacting galaxies (NGC 4676). A typical satellite trail is very thin and will affect less than 0.5% of a single Hubble exposure. Though in this case the satellite overlaps a portion of the target galaxy, the observation quality is not affected. That's because multiple exposures are taken of the same target. And the satellite trail is not in other frames. Developers at the Space Telescope Science Institute in Baltimore, Maryland, have software that identifies the bad pixels from the satellite photobombing, the extent to which they affect the image, and then flags them. When flagged, scientists can recover the full field of view. Even as the number of satellites increases over the decade, these tools for cleaning the images will still be applicable.

With ever-increasing numbers of satellites in the sky, astronomers have repeatedly expressed worry over how these satellites could impact scientific research. Earlier this year, a study of Hubble Space Telescope observations showed how some images were being ruined by streaks of light coming from satellites -- and while only a small percentage of Hubble images were affected, the authors raised concerns that with the projected number of satellites set to explode in the next decade, the problem could become serious.

Now, astronomers at the Space Telescope Science Institute (STScI), which runs Hubble, have come up with a tool to deal with satellite streaks in Hubble images. "We developed a new tool to identify satellite trails that is an improvement over the previous satellite software because it is much more sensitive. So we think it will be better for identifying and removing satellite trails in Hubble images," said Dave Stark of STScI in a statement.

Read more