Skip to main content

Hubble captures a pair of galaxies merging into an unusual ring shape

This week’s image from the Hubble Space Telescope shows a collection of galaxies, with an unusual merging pair as the star of the show. The merging galaxy pair Arp-Madore 417-391 is located 670 million light-years from Earth in the constellation of Eridanus, which is in the southern celestial hemisphere.

The pair are classified as a “peculiar galaxy” because of the way their shapes have been distorted by their interaction. “The Arp-Madore catalog is a collection of particularly peculiar galaxies spread throughout the southern sky, and includes a collection of subtly interacting galaxie,s as well as more spectacular colliding galaxies,” Hubble scientists write.

The galaxy merger Arp-Madore 417-391 steals the spotlight in this image from the NASA/ESA Hubble Space Telescope. The Arp-Madore catalog is a collection of particularly peculiar galaxies spread throughout the southern sky, and includes a collection of subtly interacting galaxies as well as more spectacular colliding galaxies. Arp-Madore 417-391, which lies around 670 million light-years away in the constellation Eridanus in the southern celestial hemisphere, is one such galactic collision. The two galaxies were distorted by gravity and twisted into a colossal ring, leaving their cores nestled side by side.
The galaxy merger Arp-Madore 417-391 steals the spotlight in this image from the NASA/ESA Hubble Space Telescope. ESA/Hubble & NASA, Dark Energy Survey/DOE/FNAL/DECam/CTIO/NOIRLab/NSF/AURA, J. Dalcanton

Galaxy mergers happen when two or more galaxies get close enough together that their gravity begins to affect one another. When galaxies collide, one of them can be annihilated, or the two can merge to form one larger galaxy. Which outcome occurs is thought to be to do with the supermassive black holes that lie at the heart of almost every galaxy.

As galaxies get closer together, the tremendous gravitational forces involved can pull them out of their normal shapes. Galactic arms can be pulled into a new direction or, as in this case, even more dramatic distortions can occur. The two galaxies involved in this merger have formed a ring shape, with the two brightly glowing cores around their supermassive black holes sitting close together.

The image was captured with Hubble’s Advanced Camera for Surveys (ACS) instrument, which operates in the visible light and ultraviolet wavelengths, and which took some of Hubble’s most famous images such as its Ultra Deep Field image. This image was taken as part of a program to identify interesting objects that could be further studied in greater depth with tools like the James Webb Space Telescope.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more
Hear the otherworldly sounds of interacting galaxies with this Hubble sonification
This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140.

When two different galaxies get close enough together that they begin interacting, they are sometimes given a shared name. That's the case with a newly released image from the Hubble Space Telescope that shows two galaxies, NGC 274 and NGC 275, which are together known as Arp 140. not only is there a new image of the pair, but there's also a sonification available so you can hear the image as well as see it.

This new NASA Hubble Space Telescope image showcases a resplendent pair of galaxies known as Arp 140. NASA/ESA/R. Foley (University of California - Santa Cruz)/Processing: Gladys Kober (NASA/Catholic University of America)

Read more
Hubble captures an exceptionally luminous supernova site
This NASA Hubble Space Telescope image is of the small galaxy known as UGC 5189A.

This week's image from the Hubble Space Telescope shows the aftermath of an epic explosion in space caused by the death of a massive star.

Some of the most dramatic events in the cosmos are supernovas, when a massive star runs out of fuel to fuse -- first running out of hydrogen, then helium, then burning through heavier elements -- and eventually can no longer sustain the outward pressure from heat caused by this fusion. When that happens, the star collapses suddenly into a dense core, and its outer layers are thrown off in a tremendous explosion called a Type II supernova.

Read more