Skip to main content

Hubble sees a cosmic bat flapping its wings deep in the Serpens Nebula

Hubble Spots Giant Flapping Shadow

Out in the depths of the Serpens Nebula, located 1,300 light-years away, lurks a strange creature. Here, where stars are born amid swirling dust and gas, lies a young star HBC 672, also known as the Bat Shadow. This star is famous for appearing to have shadowy wings extending out from it, and now scientists using the Hubble Space Telescope have spotted something curious: These wings appear to be flapping.

Bat Shadow (2018 Observation)
This image shows only the feature which was nicknamed the Bat Shadow. It is the shadow of a protoplanetary disc orbiting the star in the center of the image. NASA, ESA, K. Pontoppidan

Astronomers first observed the shadow of HBC 672 in 2018, and theorized the star has a planet-forming disk around it which, although not observed directly, casts a shadow onto a cloud behind it. And now, seeing this shadow move, they think that it could be caused by a planet passing through the disk and warping it, which in turn warps the shadow.

“You have a star that is surrounded by a disc, and the disc is not like Saturn’s rings — it’s not flat. It’s puffed up,” lead author Klaus Pontoppidan explained in a statement. “And so that means that the light from the star, if it goes straight up, can continue straight up — it’s not blocked by anything. But if it tries to go along the plane of the disc, it doesn’t get out, and it casts a shadow.”

Serpens Nebula, seen by HAWK-I
This image shows the Serpens Nebula as seen by the HAWK-I instrument installed on the Very Large Telescope of the European Southern Observatory. The filters used by HAWK-I to create this image cover wavelengths similar to the filters used by Hubble. ESO

Even though the disk itself is too small and far away to be seen by Hubble, the researchers believe that it is saddle-shaped, which would explain the apparent movement of the shadow. “If there were just a simple bump in the disk, we’d expect both sides of the shadow to tilt in opposite directions, like airplane wings during a turn,” team member Colette Salyk said in the statement.

The shadow is absolutely massive, at around 200 times the diameter of our solar system. In fact, it’s so large that it takes around 45 days for light from the star to travel to its edge.

The findings will be published in the Astrophysical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble celebrates its 33rd birthday with stunning nebula image
Astronomers are celebrating the NASA/ESA Hubble Space Telescope’s 33rd launch anniversary with an ethereal photo of a nearby star-forming region, NGC 1333. The nebula is in the Perseus molecular cloud, and is located approximately 960 light-years away.

It will soon be the 33rd anniversary of the launch of the Hubble Space Telescope, and to celebrate this milestone, Hubble scientists have shared a stunning image taken by the telescope of a picturesque nebula. NGC 1333 is a busy stellar nursery, with new stars forming among the cloud of dust and gas located 960 light-years away.

The beautiful image of the nebula shows swirls of dark dust around glowing points of light where new stars are being born. To capture this scene, Hubble used its instruments across their full wavelengths, from ultraviolet through the optical light range and into the near-infrared. Hubble took the image using its Wide Field Camera 3 instrument, which used several filter across different wavelengths that were then assigned to colors (Blue: F475W, Green: F606W, Red: F657N and F814W) to create the colorful final result.

Read more
There’s a cosmic jellyfish in this week’s Hubble image
The galaxy JW100 (lower right) features prominently in this image from the NASA/ESA Hubble Space Telescope. The streams of star-forming gas dripping from the disk of the galaxy like streaks of fresh paint are formed by a process called ram pressure stripping. Their resemblance to dangling tentacles led astronomers to refer to JW100 as a ‘jellyfish’ galaxy. JW100 is over 800 million light-years away, in the constellation Pegasus.

This week's Hubble image shows an unusual type of galaxy that might seen more at home in the ocean than among the stars: a jellyfish galaxy. These galaxies have a main body of stars, with tentacle-like structures reaching off away from the body in just one direction. This particular jellyfish galaxy, known as JW100, is located more than 800 million light-years away and is found in the constellation of Pegasus.

The jellyfish galaxy is located toward the bottom right of the image, with purple-pink tentacles of stars reaching downward. In the upper middle part of the image, you'll also see two very bright blobs, which are the core of another galaxy within the same galaxy cluster. This nearby galaxy, called IC 5338, is the brightest one within the cluster and has a large glowing area around it called a halo.

Read more
Hubble sees the changing seasons on Jupiter and Uranus
[Jupiter: left] - The forecast for Jupiter is for stormy weather at low northern latitudes. A prominent string of alternating storms is visible, forming a ‘vortex street’ as some planetary astronomers call it. [Uranus: right] - Uranus’s north pole shows a thickened photochemical haze that looks similar to the smog over cities. Several little storms can be seen near the edge of the polar haze boundary. Note: The planets do not appear in this image to scale.

Our planet isn't the only place in the solar system with dramatic weather changes. Other planets in the solar system also experience seasons, depending on their distance from the sun, and that affects their climates. One of the many jobs of the Hubble Space Telescope is to monitor the changing seasons on other planets, particularly the larger outer planets which aren't so often observed. And this week, scientist have released their newest views of Jupiter and Uranus, taken by Hubble and showing seasonal changes on the two planets.

Jupiter is far from the sun, so most of its heat comes not from outside but from within. Jupiter is thought to have a very high core temperature, which may be a result of how it was formed but could also be topped up by processes inside the planet. As this heat escapes from the planet's interior, it affects its atmosphere which contains multiple layers and has unusual features like geometric storms at its poles.

Read more