Skip to main content

See the ‘grand design’ of spiral galaxy M99 in this Hubble image

The swirling spiral of the elegant galaxy M99 is on display in this week’s image from the Hubble Space Telescope. As a prototypical spiral galaxy, like our Milky Way, M99 has the classical rotating disk of stars, gas, and dust, which is concentrated and bright in the center and reaches out into space with spiral arms. But his particular galaxy isn’t just any spiral galaxy — it is a “grand design” spiral galaxy, a classification given to the neatest and most orderly spiral galaxies whose arms are particularly prominent and well-defined.

The magnificent spiral galaxy M99 fills the frame in this image from the NASA/ESA Hubble Space Telescope.
The magnificent spiral galaxy M99 fills the frame in this image from the NASA/ESA Hubble Space Telescope. M99 – which lies roughly 42 million light-years from Earth in the constellation Coma Berenices – is a “grand design” spiral galaxy, so-called because of the well-defined, prominent spiral arms visible in this image. ESA/Hubble & NASA, M. Kasliwal, J. Lee and the PHANGS-HST Team

The galaxy M99 is located in the constellation of Coma Berenices and is around 42 million light-years from Earth. As well as being visually stunning, this galaxy is an interesting target of research and has been imaged by Hubble’s Wide Field Camera 3 instrument twice, for two different research projects.

Related Videos

The first project M99 was observed for is one which looked at the difference between two types of explosions that can occur at the end of a star’s life: Novae and supernovae. Supernovae are the more dramatic, famous events, in which massive stars run out of fuel and explode in huge, bright events which can send out shockwaves and leave behind distinctive remnants. The less famous novae are dimmer events that happen when white dwarfs in a binary system with a larger star suck off layers of matter from that star’s outer shell.

However, there may be events that exist in between the brightness of these two types of events. “Current astronomical theories predict that sudden, fleeting events could occur that shine with a brightness between that of novae and supernovae,” Hubble scientists write. “Although shrouded in mystery and controversy, astronomers observed such an event in M99 and turned to Hubble for its keen vision to take a closer look and precisely locate the fading source.”

The other project for which M99 was observed was to look at how young stars form from clouds of cold dust, in a project called Physics at High Angular resolution in Nearby GalaxieS with the Hubble Space Telescope (PHANGS-HST).

Editors' Recommendations

Hubble captures a cosmic sea monster with this image of a jellyfish galaxy
A jellyfish galaxy with trailing tentacles of stars hangs in inky blackness in this image from the NASA/ESA Hubble Space Telescope. As Jellyfish galaxies move through intergalactic space they are slowly stripped of gas, which trails behind the galaxy in tendrils illuminated by clumps of star formation. These blue tendrils are visible drifting below the core of this galaxy, and give it its jellyfish-like appearance. This particular jellyfish galaxy — known as JO201 — lies in the constellation Cetus, which is named after a sea monster from ancient Greek mythology. This sea-monster-themed constellation adds to the nautical theme of this image.

This week's image from the Hubble Space Telescope shows a special and delightful cosmic object: a jellyfish galaxy. These galaxies are named for their larger main body with tendrils that float along after them, like the sea creatures.

This particular jellyfish galaxy is called JO201, and is located in the constellation of Cetus. Appropriately for the sea theme, Cetus is a constellation named after a Greek mythological sea monster that sometimes had the body of a whale or serpent along with the head of a boar. In the image, you can see the main body of the galaxy in the center, with the trailing tendrils spreading down toward the bottom of the frame.

Read more
Satellites like SpaceX’s Starlink are disrupting Hubble observations
The curving light streak created by an artificial satellite mars an image taken by the Hubble Space Telescope.

Astronomers are once again worried about the effect that satellites like those used by SpaceX for its Starlink service will have on scientific research. A recent study looked at the effect that such satellites were having on observations from the Hubble Space Telescope and found that observations were already being impacted by the number of satellites nearby.

Telescopes like Hubble are particularly vulnerable to interference from satellites because of their location, in an area called low-Earth orbit (LEO). At less than 1,200 miles above the Earth's surface, this region is prime real estate for both scientific projects like Hubble and the International Space Station and for commercial projects like satellite megaconstellations.  While there have been satellites in this region for many years, recently the number of satellites has been rising dramatically, especially due to projects like Starlink which rely on having thousands of satellites in orbit.

Read more
Hubble sees the dramatic collision of NASA’s DART spacecraft and an asteroid
These three panels capture the breakup of the asteroid Dimorphos when it was deliberately hit by NASA's 1,200-pound Double Asteroid Redirection Test (DART) mission spacecraft on September 26, 2022. Hubble Space Telescope had a ringside view of the space demolition derby.

Last year NASA tested out a new method for defending the planet from incoming objects by crashing a spacecraft into an asteroid. Recently, further analysis of data from the impact has shown more about what occurred during and after the impact, and how effective it was at changing the orbit of the asteroid.

The Hubble Space Telescope captured a series of images showing the aftermath of the impact, which have been put together into a video showing the bright flash of the impact and the emerging plume of material sent up from the asteroid:

Read more