Skip to main content

Hubble captures an open star cluster in a nearby satellite galaxy

The Hubble Space Telescope recently captured an image of a beautiful star cluster called NGC 1858, located in an area full of star-forming regions. This area is part of the Large Magellanic Cloud, one of the Milky Way’s satellite galaxies, and is located 160,000 light-years away and is thought to be around 10 million years old.

The Large Magellanic Cloud is one of several satellite galaxies to the Milky Way, which are smaller galaxies that are gravitationally bound to our galaxy. Along with its companion, the Small Magellanic Cloud, it orbits around the Milky Way and will eventually collide with our galaxy in billions of years’ time.

Against a backdrop littered with tiny pinpricks of light glint a few, brighter stars. This whole collection is NGC 1858, an open star cluster in the northwest region of the Large Magellanic Cloud, a satellite galaxy of our Milky Way that boasts an abundance of star-forming regions. NGC 1858 is estimated to be around 10 million years old.clock
Against a backdrop littered with tiny pinpricks of light glint a few, brighter stars. This whole collection is NGC 1858, an open star cluster in the northwest region of the Large Magellanic Cloud, a satellite galaxy of our Milky Way that boasts an abundance of star-forming regions. NGC 1858 is estimated to be around 10 million years old. NASA, ESA and G. Gilmore (University of Cambridge); Processing: Gladys Kober (NASA/Catholic University of America)

This particular star cluster is a type called an open cluster, which means it is not as tightly bound by gravity as some other structures and has a more irregular shape. In addition, the amount of dust and gas present here means that it can be classified as an emission nebula, as light from the stars in the region has ionized the gas and caused it to emit its own light.

These features make this region of scientific interest in learning about star formation. “The stars within this young cluster are at different phases of their evolution, making it a complex collection,” Hubble scientists write. “Within NGC 1858, researchers have detected a protostar, a very young, emerging star, indicating that star formation within the cluster may still be active or has stopped very recently. The presence of an emission nebula also suggests that star formation recently occurred here, since the radiation required to ionize the gas of the nebula comes from stars that only live a short time.”

The image was taken using both visible light and infrared wavelengths. Although Hubble primarily operates in the visible light range, its instruments can also look in some regions of the infrared, allowing researchers to build up a more complete picture of complex structures of dust and gas such as nebulae.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble spots a massive star forming amid clouds of dust and gas
This image from the NASA/ESA Hubble Space Telescope is a relatively close star-forming region known as IRAS 16562-3959.

A stunning new image from the Hubble Space Telescope shows the birth of a new, massive star at around 30 times the mass of our sun. Nestled with a nearby star-forming region called IRAS 16562-3959, the baby star is located within our galaxy and around 5,900 light-years from Earth.

You can see the sparkle of bright stars throughout the image, with the star-forming region visible as the orange-colored clouds of dust and gas stretching diagonally across the frame. These clouds are where dust and gas clump together to form knots, gradually attracting more dust and gas, growing over time to become protostars.

Read more
Hubble spies baby stars being born amid chaos of interacting galaxies
Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. They form when knots of gas gravitationally collapse to create about 1 million newborn stars per cluster.

When two galaxies collide, the results can be destructive, with one of the galaxies ending up ripped apart, but it can also be constructive too. In the swirling masses of gas and dust pulled around by the gravitational forces of interacting galaxies, there can be bursts of star formation, creating new generations of stars. The Hubble Space Telescope recently captured one such hotbed of star formation in galaxy AM 1054-325, which has been distorted into an unusual shape due to the gravitational tugging of a nearby galaxy.

Galaxy AM 1054-325 has been distorted into an S-shape from a normal pancake-like spiral shape by the gravitational pull of a neighboring galaxy, as seen in this Hubble Space Telescope image. A consequence of this is that newborn clusters of stars form along a stretched-out tidal tail for thousands of light-years, resembling a string of pearls. NASA, ESA, STScI, Jayanne English (University of Manitoba)

Read more
Small exoplanet could be hot and steamy according to Hubble
This is an artist’s conception of the exoplanet GJ 9827d, the smallest exoplanet where water vapour has been detected in its atmosphere. The planet could be an example of potential planets with water-rich atmospheres elsewhere in our galaxy. It is a rocky world, only about twice Earth’s diameter. It orbits the red dwarf star GJ 9827. Two inner planets in the system are on the left. The background stars are plotted as they would be seen to the unaided eye looking back toward our Sun, which itself is too faint to be seen. The blue star at upper right is Regulus, the yellow star at bottom centre is Denebola, and the blue star at bottom right is Spica. The constellation Leo is on the left, and Virgo is on the right. Both constellations are distorted from our Earth-bound view from 97 light-years away.

One of the big topics in exoplanet research right now is not just finding exoplanets but also looking at their atmospheres. Tools like the James Webb Space Telescope are designed to allow researchers to look at the light coming from distant stars and see how it is filtered as it passes by exoplanets, allowing them to learn about the composition of their atmospheres. But scientists are also using older telescopes like the Hubble Space Telescope for similar research -- and Hubble recently identified water vapor in an exoplanet atmosphere.

“This would be the first time that we can directly show through an atmospheric detection that these planets with water-rich atmospheres can actually exist around other stars,” said researcher Björn Benneke of the Université de Montréal in a statement. “This is an important step toward determining the prevalence and diversity of atmospheres on rocky planets."

Read more