Skip to main content

Hubble images a globular cluster that holds a mystery

This week’s image from the Hubble Space Telescope shows a sparkling collection of thousands of stars. One formation commonly seen within galaxies is called a globular cluster, in which thousands of stars are grouped tightly together in a spherical shape. The name comes from the Latin globulus, meaning small spherical body, as that is how they appear in the sky.

When seen up close, however, these globular clusters are dazzling arrays that can include hundreds of thousands of stars shining brightly. Researchers are interested in globular clusters because they can be some of the oldest objects in their galaxies, making them useful for estimating how old a given galaxy is.

The globular cluster Ruprecht 106.
Like Sherlock Holmes’s magnifying glass, the NASA/ESA Hubble Space Telescope can peer into an astronomical mystery in search of clues. The enigma in question concerns the globular cluster Ruprecht 106, pictured here. Unlike most globular clusters, Ruprecht 106 may be what astronomers call a single population globular cluster. ESA/Hubble & NASA, A. Dotter

This particular globular cluster, called Ruprecht 106, is unusual though. That’s because it is thought to be a rare type called a single population globular cluster, in which all the stars are the same age and formed around the same time.

Recommended Videos

“While the majority of stars in a globular cluster formed at approximately the same location and time, it turns out that almost all globular clusters contain at least two groups of stars with distinct chemical compositions. The newer stars will have a different chemical make-up that includes elements processed by their older, massive cluster companions,” Hubble scientists explain. “A tiny handful of globular clusters do not possess these multiple populations of stars, and Ruprecht 106 is a member of this enigmatic group.”

Typically, in a globular cluster you would see multiple generations of stars, as some have reached the end of their lives and new stars have been born. Astronomers can tell these different generations apart by their composition, as younger stars have more, heavier elements. But in this globular cluster, everything seems to be of one generation. Astronomers continue to research this cluster to understand why it is so different from the typical globular cluster.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Mysterious colorful clouds drift through Mars’s sky in new Curiosity images
NASA's Curiosity Mars rover captured this feather-shaped iridescent cloud just after sunset on Jan. 27, 2023, the 3,724th Martian day, or sol, of the mission. Studying the colors in iridescent clouds tells scientists something about particle size within the clouds and how they grow over time.

As the Curiosity rover explores its way around Mars, it isn't only looking down at the martian rocks and regolith -- it is also looking up at the martian sky. Like Earth, Mars has its own seasonal weather patterns, but with its different atmosphere that weather can include some unusual phenomena, such as striking colorful clouds.

A recent video created from images captured by Curiosity shows clouds tinted red and green flowing though the sky over Mars. Captured using the rover's Mastcam instrument on January 17, 2025, the video shows the clouds during twilight on the red planet.

Read more
Hubble spots a cosmic bullseye: a galaxy with nine rings
LEDA 1313424, aptly nicknamed the Bullseye, is two and a half times the size of our Milky Way and has nine rings — six more than any other known galaxy. High-resolution imagery from NASA’s Hubble Space Telescope confirmed eight rings, and data from the W. M. Keck Observatory in Hawaii confirmed a ninth. Hubble and Keck also confirmed which galaxy dove through the Bullseye, creating these rings: the blue dwarf galaxy that sits to its immediate center-left.

The Hubble Space Telescope has captured this striking image of an unusual galaxy with a bullseye structure, as nine rings surround its central point. Technically known as LEDA 1313424, the galaxy has more rings than any other known galaxy, and studying it is helping astronomers to learn how galaxies like this are created.

Along with the W. M. Keck Observatory in Hawai'i, astronomers used Hubble to see that there was not just one ring around this galaxy but many. "This was a serendipitous discovery," said lead researcher Imad Pashaof Yale University. "I was looking at a ground-based imaging survey and when I saw a galaxy with several clear rings, I was immediately drawn to it. I had to stop to investigate it."

Read more
Hubble snaps another gorgeous image of the Tarantula Nebula
This NASA/ESA Hubble Space Telescope image features a dusty yet sparkling scene from one of the Milky Way’s satellite galaxies, the Large Magellanic Cloud. The Large Magellanic Cloud is a dwarf galaxy situated about 160,000 light-years away in the constellations Dorado and Mensa.

This gorgeous new image from the Hubble Space Telescope shows a bustling nearby star forming region called the Tarantula Nebula. Given its name due to its complex, web-like internal structure, this nebula is located in a satellite galaxy of the Milky Way called the Large Magellanic Cloud and is often studied by astronomers researching star formation and evolution.

This new image shows the edges of the nebula, further out from its center. In the middle of the nebula are enormous stars that are as much as 200 times the mass of the sun, but here on the outskirts the view is calmer.

Read more