Skip to main content

Hubble had a ringside seat to observe a star going supernova

When they run out of fuel and come to the end of their lives, stars can die in a most dramatic fashion: Exploding in an epic supernova that throws out dust and gas at tremendous speeds. Astronomers often see the remnants of such supernovas, but recently the Hubble Space Telescope observed something much rarer when it captured a star in the process of going supernova.

Supernova SN 2020fqv is located in the two interacting Butterfly Galaxies, 60 million light-years away from Earth. It was first spotted in April 2020 by the Zwicky Transient Facility at the Palomar Observatory when the star was in the earliest stages of a supernova, and Hubble scientists quickly decided to turn their attention to it as well.

Astronomers recently witnessed supernova SN 2020fqv explode inside the interacting Butterfly galaxies.
Astronomers recently witnessed supernova SN 2020fqv explode inside the interacting Butterfly galaxies, located about 60 million light-years away in the constellation Virgo. Researchers quickly trained NASA’s Hubble Space Telescope on the aftermath. AUTHOR: NASA, ESA, Ryan Foley (UC Santa Cruz) IMAGE PROCESSING: Joseph DePasquale (STScI)

“We used to talk about supernova work like we were crime scene investigators, where we would show up after the fact and try to figure out what happened to that star,” explained team leader Ryan Foley of the University of California, Santa Cruz, in a statement. “This is a different situation, because we really know what’s going on and we actually see the death in real time.”

Recommended Videos

Hubble was able to catch a glimpse of the material around the star, called circumstellar material, just a few hours after the supernova had occurred. This is an incredibly rare opportunity to study what happened to the star in its final days, as this material is only visible to telescopes for a very short time.

Please enable Javascript to view this content

Along with data from NASA’s exoplanet-hunting Transiting Exoplanet Survey Satellite (TESS), which was also observing the region, scientists were able to build up a picture of what happened to the star in its final years before exploding.

“Now we have this whole story about what’s happening to the star in the years before it died, through the time of death, and then the aftermath of that,” said Foley. “This is really the most detailed view of stars like this in their last moments and how they explode.”

Understanding this particular star could help us understand other stars which may be on the verge of going supernova, like our neighboring star Betelgeuse which some people thought could be about to go supernova in 2019 (though in that case, the star’s odd behavior turned out to be due to a cloud of dust rather than an imminent explosion).

“This could be a warning system,” said Foley. “So if you see a star start to shake around a bit, start acting up, then maybe we should pay more attention and really try to understand what’s going on there before it explodes. As we find more and more of these supernovas with this sort of excellent data set, we’ll be able to understand better what’s happening in the last few years of a star’s life.”

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
Hubble discovers over 1,000 new asteroids thanks to photobombing
This NASA/ESA Hubble Space Telescope image of the barred spiral galaxy UGC 12158 looks like someone took a white marking pen to it. In reality it is a combination of time exposures of a foreground asteroid moving through Hubble’s field of view, photobombing the observation of the galaxy. Several exposures of the galaxy were taken, which is evidenced by the dashed pattern.

The Hubble Space Telescope is most famous for taking images of far-off galaxies, but it is also useful for studying objects right here in our own solar system. Recently, researchers have gotten creative and found a way to use Hubble data to detect previously unknown asteroids that are mostly located in the main asteroid belt between Mars and Jupiter.

The researchers discovered an incredible 1,031 new asteroids, many of them small and difficult to detect with several hundred of them less than a kilometer in size. To identify the asteroids, the researchers combed through a total of 37,000 Hubble images taken over a 19-year time period, identifying the tell-tale trail of asteroids zipping past Hubble's camera.

Read more
Hubble spots a bright galaxy peering out from behind a dark nebula
The subject of this image taken with the NASA/ESA Hubble Space Telescope is the spiral galaxy IC 4633, located 100 million light-years away from us in the constellation Apus. IC 4633 is a galaxy rich in star-forming activity and also hosts an active galactic nucleus at its core. From our point of view, the galaxy is tilted mostly towards us, giving astronomers a fairly good view of its billions of stars.

A new image from the Hubble Space Telescope shows a galaxy partly hidden by a huge cloud of dust known as a dark nebula. The galaxy IC 4633 still shines brightly and beautifully in the main part of the image, but to the bottom right, you can see dark smudges of dust that are blocking the light from this part of the galaxy.

Taken using Hubble's Advanced Camera for Surveys (ACS) instrument, the image also incorporates data from the DECam instrument on the Víctor M. Blanco 4-meter Telescope, which is located in Chile. By bringing together data from the space-based Hubble and the ground-based DECam, astronomers can get a better look at this galaxy, located 100 million light-years away, and the dark dust partially obscuring it.

Read more
Hubble captures the dramatic jets of a baby star
FS Tau is a multi-star system made up of FS Tau A, the bright star-like object near the middle of the image, and FS Tau B (Haro 6-5B), the bright object to the far right that is partially obscured by a dark, vertical lane of dust. The young objects are surrounded by softly illuminated gas and dust of this stellar nursery. The system is only about 2.8 million years old, very young for a star system. Our Sun, by contrast, is about 4.6 billion years old.

A new image from the Hubble Space Telescope shows the drama that unfolds as a new star is born. Within a swirling cloud of dust and gas, a newly formed star is giving off powerful jets that blast away material and cut through the nearby dust of the surrounding nebula to create this stunning vista.

The image shows a system called FS Tau, located 450 light-years away in a region called Taurus-Auriga. Within this region are many stellar nurseries with new stars forming, making it a favorite target for astronomers studying star formation. But this particular system stands out for the dramatic nature of its newborn star, which has formed an epic structure called a Herbig-Haro object.

Read more