Skip to main content

Bright young star shoots out strange fan of material in Hubble image

The lifecycle of stars is dramatic, from the collapsing of clouds of dust and gas under gravitational pressures to form protostars, to the explosive end of massive stars which erupt as supernovae. Massive stars heavier than our sun are particularly dramatic, eventually puffing up to become red supergiants as they come to the ends of their lives before finishing up as black holes or neutron stars. But massive stars can go through epic changes when they are in their younger years as well, as this week’s image from the Hubble Space Telescope shows.

The image is of a bright, young, massive star surrounded by a stunning structure of dust and gas. The object is called IRAS 05506+2414, and is located more than 9,000 light-years away from Earth in the constellation of Taurus. And its swirling shape seems to have been created by a disruptive event in the life of this young star.

A shroud of thick gas and dust surrounds a bright young star.
A shroud of thick gas and dust surrounds a bright young star in this image from the NASA/ESA Hubble Space Telescope. Hubble’s Wide Field Camera 3 inspected a young stellar object, over 9,000 light-years away in the constellation Taurus, to help astronomers understand the earliest stages in the lives of massive stars. This object – which is known to astronomers as IRAS 05506+2414 – may be an example of an explosive event caused by the disruption of a massive young star system. ESA/Hubble & NASA, R. Sahai

“The swirling discs of material surrounding a young star are usually funneled into twin outflows of gas and dust from the star,” Hubble scientists write. “In the case of IRAS 05506+2414, however, a fan-like spray of material traveling at velocities of up to 217 miles per second (350 km per second) is spreading outwards from the center of this image.”

According to a paper from 2008, the outflows of material in IRAS 05506+2414 could be similar to the “bullets” of gas seen shooting out of the Orion nebula. These bullets appear small from a distance, but are actually around the size of our solar system and are zipping away from the center of the nebula at a tremendous speed of 250 miles or 400 kilometers per second. First seen in 1983, the Orion bullets remain something of a mystery, though they are brightly visible in images because the iron atoms at the tips of each bullet get so hot from the friction of their movements that they glow due to their 5000°C (9,000°F) temperatures.

The case of IRAS 05506+2414 is unusual, according to another paper from 2017, because other young stars throw out twin jets of materials like those seen in Herbig-Haro objects. The fans of material given off by this star are very different and scientists are still researching how the star system could have been disrupted to cause this result.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble observes a cluster of boulders around impacted asteroid Dimorphos
A NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos taken on 19 December 2022.

Last year, NASA deliberately crashed a spacecraft into an asteroid, in a first-of-its-kind test of planetary defense. At the time, telescopes around the world including the Hubble Space Telescope observed the impact between the DART spacecraft and the Dimorphos asteroid, capturing footage of the plumes of dust thrown up. Now, Hubble has observed Dimorphos once again and seen that a number of boulders have been ejected from the asteroid.

The Hubble image shown below was taken on 19 December 2022, around four months after the impact, and shows the bright streak of the asteroid across the sky, surrounded by small boulders which were knocked loose during the impact. This view was only possible after several months as the impact initially sent up large amounts of dust which made it difficult to see the asteroid in detail.

Read more
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more
Check out these stunning images of SpaceX’s recent Starship test
SpaceX's Starship spacecraft during a test in June 2023.

As part of preparations for the second test flight of its Super Heavy rocket and Starship spacecraft, SpaceX this week performed a static fire test of the latter.

The exercise, which took place at SpaceX’s Starbase facility in Boca Chica, Texas, involved firing the Starship’s six engines for several seconds.

Read more