Skip to main content

James Webb spots clues to the large-scale structure of the universe

If you look at the universe on a big enough scale, the billions of galaxies out there aren’t randomly scattered. Instead, they form a structure made up of galaxies and the gas between them, which are connected into filaments in a geometric-like pattern. This structure is known as the cosmic web, and it was created by the conditions at the start of the observable universe during the Big Bang.

The James Webb Space Telescope recently spotted some of the earliest evidence of this web, identifying some extremely old galaxies which were observed just 830 million years after the Big Bang and which are formed into a filament.

An arrangement of 10 distant galaxies marked by eight white circles in a diagonal, thread-like line.
This deep galaxy field from Webb’s NIRCam (Near-Infrared Camera) shows an arrangement of 10 distant galaxies marked by eight white circles in a diagonal, thread-like line. (Two of the circles contain more than one galaxy.) This 3 million light-year-long filament is anchored by a very distant and luminous quasar – a galaxy with an active, supermassive black hole at its core. The quasar, called J0305-3150, appears in the middle of the cluster of three circles on the right side of the image. Its brightness outshines its host galaxy. The 10 marked galaxies existed just 830 million years after the big bang. The team believes the filament will eventually evolve into a massive cluster of galaxies. Image NASA, ESA, CSA, Feige Wang (University of Arizona); Image Processing Joseph DePasquale (STScI)

Researchers used Webb’s NIRCam instrument to identify the thread of 10 very early galaxies, which are strung together in a structure almost 3 million light-years long. Over time the filament will attract more galaxies and become a galaxy cluster.

“I was surprised by how long and how narrow this filament is,” said researcher Xiaohui Fan of the University of Arizona in a statement. “I expected to find something, but I didn’t expect such a long, distinctly thin structure.”

The researchers also looked at the development of black holes, observing eight galaxies with bright active supermassive black holes at their hearts called quasars. Even though they are from the early stages of the universe too, some of these black holes are up to 2 billion times the mass of our sun, and researchers are trying to figure out how they could have got so big so fast. This rate of growth requires an already massive black hole to feed on huge amounts of nearby matter.

“These unprecedented observations are providing important clues about how black holes are assembled,” said researcher Jinyi Yang of the University of Arizona. “We have learned that these black holes are situated in massive young galaxies that provide the reservoir of fuel for their growth.”

The results are published in two papers in The Astrophysical Journal.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures image of the most distant star ever discovered
A massive galaxy cluster called WHL0137-08 contains the most strongly magnified galaxy known in the universe’s first billion years: the Sunrise Arc, and within that galaxy, the most distant star ever detected, nicknamed Earendel.

The James Webb Space Telescope has captured a stunning image of the most distant star ever discovered. Discovered by Hubble in 2020, the star named Earendel is located an astonishing 28 billion light-years away. While in the previous Hubble image, the star was only visible as a small blob, these new observations from Webb are detailed enough to reveal information about the star like its type and information about the galaxy in which it resides.

The Webb image shows a galaxy cluster called WHL0137-08, which is so massive that it bends spacetime and acts like a magnifying glass for the more distant galaxies behind it. Some of these distant galaxies being magnified include one called the Sunrise Arc, which hosts Earendel. The Sunrise Arc is located near the end of one of the spikes from the bright central star, at around the five o'clock position. A zoomed-in version of the image shows the Arc and Earendel within t.

Read more
Scientists explain cosmic ‘question mark’ spotted by Webb space telescope
The shape of a question mark captured by the James Webb Space Telescope.

Considering the myriad of unknowns that still exist for scientists exploring the vastness of the universe, the recent discovery in deep space of what seems to be a giant question mark feels highly appropriate.

Captured by the powerful James Webb Space Telescope, the bright, distinctive object clearly bears the shape of a question mark, leaving some stargazers wondering if the cosmos is teasing us, or perhaps motivating us to keep on searching the depths of space for the secrets that it may reveal.

Read more
James Webb telescope captures the gorgeous Ring Nebula in stunning detail
JWST/NIRcam composite image of the Ring Nebula. The images clearly show the main ring, surrounded by a faint halo and with many delicate structures. The interior of the ring is filled with hot gas. The star which ejected all this material is visible at the very centre. It is extremely hot, with a temperature in excess of 100,000 degrees. The nebula was ejected only about 4000 years ago. Technical details: The image was obtained with JWST's NIRCam instrument on August 4, 2022. Images in three different filters were combined to create this composite image: F212N (blue); F300M (green); and F335M (red).

A new image from the James Webb Space Telescope shows the stunning and distinctive Ring Nebula -- a gorgeous structure of dust and gas located in the constellation of Lyra. This nebula is a favorite among sky watchers as it faces toward Earth so we can see its beautiful structure, and because it is visible throughout the summer from the Northern Hemisphere. It is different from the Southern Ring nebula, which Webb has also imaged, but both are a type of object called a planetary nebula.

Located just 2,600 light-years away, the Ring Nebula is a structure of dust and gas that was first observed in the 1770s, when it was thought to be something like a planet. With advances in technology, astronomers realized it was not a planet, but rather a cloud of dust and gas, and thanks to highly detailed observations by space telescopes like Hubble and Webb, scientists have been able to see more of its complex structure. The nebula isn't a simple sphere or blob, but is rather a central, football-shaped structure surrounded by rings of different material.

Read more