Skip to main content

Hubble identifies a 10-billion-year-old pair of quasars in merging galaxies

Astronomers have discovered two pairs of quasars in the distant Universe, about 10 billion light-years from Earth. In each pair, the two quasars are separated by only about 10,000 light-years, making them closer together than any other double quasars found so far away. The proximity of the quasars in each pair suggests that they are located within two merging galaxies. Quasars are the intensely bright cores of distant galaxies, powered by the feeding frenzies of supermassive black holes. One of the distant double quasars is depicted in this illustration.
Astronomers have discovered two pairs of quasars in the distant Universe, about 10 billion light-years from Earth. In each pair, the two quasars are separated by only about 10,000 light-years, making them closer together than any other double quasars found so far away. The proximity of the quasars in each pair suggests that they are located within two merging galaxies. Quasars are the intensely bright cores of distant galaxies, powered by the feeding frenzies of supermassive black holes. One of the distant double quasars is depicted in this illustration. International Gemini Observatory/NOIRLab/NSF/AURA/J. da Silva

When galaxies get close enough together, they can collide in epic events which can destroy one or lead to the two merging into a larger galaxy. And sometimes, on very rare occasions, the two galaxies might both include a quasar — an extremely bright galactic core formed around a supermassive black hole, so luminous it can shine brighter than the entire rest of the galaxy.

Now, a new study has identified not one but two pairs of quasars in galaxies that are merging. By studying these two pairs, which are extremely far away and are thus around 10 billion years old, astronomers can learn more about how galaxies and their supermassive black holes merge.

“We estimate that in the distant Universe, for every one thousand quasars, there is one double quasar. So finding these double quasars is like finding a needle in a haystack,” said Yue Shen of the University of Illinois at Urbana-Champaign, lead author of the paper, in a statement.

Astronomers believe that quasars were more common around 10 billion years ago, and there were many galactic mergers happening. That means it’s more likely to find pairs of quasars from this particular period.

“This truly is the first sample of dual quasars at the peak epoch of galaxy formation with which we can use to probe ideas about how supermassive black holes come together to eventually form a binary,” said research team member Nadia Zakamska of Johns Hopkins University.

The researchers discovered the pairs of quasars using the instruments including Hubble Space Telescope and the Gaia space observatory. The quasar pairs are so close together they appear to be one object until the researchers looked closer using Hubble.

Now astronomers will be able to use these pairs to learn more about the formation of galaxies. “Quasars make a profound impact on galaxy formation in the universe,” Zakamska said. “Finding dual quasars at this early epoch is important because we can now test our long-standing ideas of how black holes and their host galaxies evolve together.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb captures a stunning colliding pair of galaxies
This image from the NASA/ESA/CSA James Webb Space Telescope depicts IC 1623, an entwined pair of interacting galaxies which lies around 270 million light-years from Earth in the constellation Cetus. The two galaxies in IC 1623 are plunging headlong into one another in a process known as a galaxy merger. Their collision has ignited a frenzied spate of star formation known as a starburst, creating new stars at a rate more than twenty times that of the Milky Way galaxy.

A recently released image from the James Webb Space Telescope shows the stunning galaxies IC 1623 A and B, located 270 million light-years away, which are in the process of merging. As the two galaxies crash together, they are intersecting and feeding high levels of star formation, creating an area known as a starburst region.

James Webb captured the image using three of its instruments: MIRI, NIRSpec, and NIRCam. Each instrument looked in a different portion of the infrared to see the different features of the merging galaxy. "This interacting galaxy system is particularly bright at infrared wavelengths, making it a perfect proving ground for Webb’s ability to study luminous galaxies," Webb scientists write.

Read more
Two interacting galaxies are warped by gravitational forces in Hubble image
The two interacting galaxies making up the pair known as Arp-Madore 608-333 seem to float side by side in this image from the NASA/ESA Hubble Space Telescope.

This week's image from the Hubble Space Telescope shows two galaxies close enough together to have just one shared name: Arp-Madore 608-333. They are what is known as interacting galaxies, meaning that the huge pull of each of their gravitational fields is affecting the other. The power of gravity is warping their shapes and distorting them into uneven forms.

"Though they appear serene and unperturbed, the two are subtly warping one another through a mutual gravitational interaction that is disrupting and distorting both galaxies," Hubble scientists said in a note accompanying the image release. "This drawn-out galactic interaction was captured by Hubble’s Advanced Camera for Surveys."

Read more
One galaxy, two views: Webb and Hubble take on the same target
This image of the spiral galaxy IC 5332, taken by the NASA/ESA/CSA James Webb Space Telescope with its MIRI instrument, has been scaled and cropped to match the NASA/ESA Hubble Space Telescope’s view of the same galaxy.

The Hubble Space Telescope and the James Webb Space Telescope are both powerful tools for peering out into the cosmos, but the way they view the universe is quite different. While Hubble primarily looks in the visible light wavelength in the same range as the human eye, Webb looks in the infrared range which is beyond human vision. Looking at the same object in different wavelengths reveals different features, as a recently released pair of image demonstrates.

Webb and Hubble both imaged the spiral galaxy IC 5332, located over 29 million light-years away. Though this galaxy is only about one-third of the size of the Milky Way, it makes a great target for astronomy because the spiral is almost perfectly face-on from our point of view. The image captured by Webb's ultra-cool MIRI instrument shows the skeletal-like structure of the galaxy's spiral arms.

Read more