Skip to main content

Just one instrument mode left and the James Webb Telescope will be ready for science

The countdown is on for the release of the first science images from the James Webb Space Telescope, scheduled for July 12. But before full science operations begin, each of Webb’s four instruments has to be calibrated and checked in its various modes to ensure it’s ready to collect data. This week, the Mid-Infrared instrument (MIRI) has completed its checks and NASA has announced that it is ready for science.

Unlike Webb’s other three instruments which operate in the near-infrared range, MIRI operates in the mid-infrared which means it has some peculiarities. It was the last instrument to reach its operating temperature because its silicon detectors have to be so cold to work — at a temperature of less than 7 degrees Kelvin. In order to control its temperature exactly, the MIRI instrument has both a heater and a cooler. MIRI reached its operating temperature in April this year, and since then  it ha been through an extensive calibration process and engineers have confirmed that its imaging, its low- and medium-resolution spectroscopy, and finally its coronagraphic imaging modes are all ready to go.

MIRI Flight Instrument Undergoing Alignment Testing
MIRI, ( Mid InfraRed Instrument ), flight instrument for the James Webb Space Telescope, JWST, during ambient temperature alignment testing in RAL Space’s clean rooms at STFC’s Rutherford Appleton Laboratory, 8th November 2010. Science and Technology Facilities Council (STFC)

“We are thrilled that MIRI is now a functioning, state-of-the-art instrument with performances across all its capabilities better than expected,” said MIRI European principal investigator Gillian Wright and MIRI science lead George Rieke in a statement. “Our multinational commissioning team has done a fantastic job getting MIRI ready in the space of just a few weeks. Now we celebrate asll the people, scientists, engineers, managers, national agencies, ESA [European Space Agency], and NASA, who have made this instrument a reality as MIRI begins to explore the infrared universe in ways and to depths never achieved before.”

You can track the progress of James Webb getting its four instruments ready for their seventeen modes on the James Webb tracker on NASA’s website. Currently, sixteen of the modes are ready for science, with just the coronagraphy mode of the NIRCam instrument left to be signed off. Once this is done, Webb will be ready for science operations, looking at exoplanet atmospheres, finding some of the earliest galaxies in the universe, and much more.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots exoplanet with gritty clouds of sand floating in its atmosphere
This illustration conceptualises the swirling clouds identified by the James Webb Space Telescope in the atmosphere of the exoplanet VHS 1256 b. The planet is about 40 light-years away and orbits two stars that are locked in their own tight rotation. Its clouds, which are filled with silicate dust, are constantly rising, mixing, and moving during its 22-hour day.

One of the most exciting things about the James Webb Space Telescope is that not only can it detect exoplanets, but it can even peer into their atmospheres to see what they are composed of. Understanding exoplanet atmospheres will help us to find potentially habitable worlds, but it will also turn up some fascinating oddities -- like a recent finding of an exoplanet with an atmosphere full of gritty, sand clouds.

Exoplanet VHS 1256 b, around 40 light-years away, has a complex and dynamic atmosphere that shows considerable changes over a 22-hour day. Not only does the atmosphere show evidence of commonly observed chemicals like water, methane, and carbon monoxide, but it also appears to be dotted with clouds made up of silicate grains.

Read more
Astronomers share early images from James Webb’s galaxy survey
Images of four example galaxies selected from the first epoch of COSMOS-Web NIRCam observations, highlighting the range of structures that can be seen. In the upper left is a barred spiral galaxy; in the upper right is an example of a gravitational lens, where the mass of the central galaxy is causing the light from a distant galaxy to be stretched into arcs; on the lower left is nearby galaxy displaying shells of material, suggesting it merged with another galaxy in its past; on the lower right is a barred spiral galaxy with several clumps of active star formation.

One of the major aims of the James Webb Space Telescope is to observe some of the earliest galaxies in the universe, and to do that it needs to be able to see extremely distant objects. But looking at a particular very old galaxy in detail is only half of the problem. To truly understand the earliest stages of the universe, astronomers also need to see how these very old galaxies are distributed so they can understand the large-scale structure of the universe.

That's the aim of the COSMOS-Web program, which is using James Webb to survey a wide area of the sky and look for these rare, ancient galaxies. It aims to study up to 1 million galaxies during over 255 hours of observing time, using both Webb's near-infrared camera (NIRCam) and its mid-infrared instrument (MIRI) camera. While there is still plenty of observing left to do, the researchers in the COSMOS-Web program recently shared some of their first results.

Read more
How James Webb is peering into galaxies to see stars being born
Researchers are getting their first glimpses inside distant spiral galaxies to see how stars formed and how they change over time, thanks to the James Webb Space Telescope’s ability to pierce the veil of dust and gas clouds.

Recently astronomers used the James Webb Space Telescope to look at the structures of dust and gas which create stars in nearby galaxies. Now, some of the researchers have shared more about the findings and what they mean for our understanding of how galaxies form and evolve.

The project, called Physics at High Angular resolution in Nearby Galaxies, or PHANGS, used James Webb to observe several galaxies which are similar to our own Milky Way to see how stars are forming within them.

Read more