Skip to main content

James Webb telescope gets a view of the ‘white whale’ of exoplanet research

Studying other planets is difficult not only because they are so far away, but also because they can have properties that make taking readings much harder. Here in our solar system, we only have scant information about the surface of Venus because its thick atmosphere makes it hard to view. Being 50 light-years away, the planet GJ 1214 b has proved similarly tricky, defying 15 years of attempted observations due to its hazy nature.

But now, the James Webb Space Telescope has been able to peer into the planet’s atmosphere for the first time, revealing the secrets of this mysterious place. It’s known as a mini-Neptune because it has a thick atmosphere and layers of ice like Neptune. Only around three times the diameter of the Earth, the planet likely has lots of water, but it is located in the atmosphere, not on the surface, due to its high surface temperature.

This artist’s concept depicts the planet GJ 1214 b, a “mini-Neptune” with what is likely a steamy, hazy atmosphere. A new study based on observations by NASA’s Webb telescope provides insight into this type of planet, the most common in the galaxy.
This artist’s concept depicts the planet GJ 1214 b, a “mini-Neptune” with what is likely a steamy, hazy atmosphere. A new study based on observations by NASA’s Webb telescope provides insight into this type of planet, the most common in the galaxy. Image used with permission by copyright holder

This water vapor may have contributed to the haziness of the atmosphere, which made observations difficult. However, the main culprit compound causing the reflectiveness remains unknown. “The planet is totally blanketed by some sort of haze or cloud layer,” said lead author Eliza Kempton of the University of Maryland in a statement. “The atmosphere just remained totally hidden from us until this observation.”

To observe the planet, researchers used Webb’s Mid-Infrared Instrument (MIRI), which can see temperature variations across the planet, showing the differences between the hot dayside that always faces the star and the cooler nightside that always faces out into space. As well as learning about the atmosphere’s composition, scientists were also able to determine that the planet’s average temperature is a scorching 230 degrees Celsius.

This shows how new tools are able to crack some of the tough nuts in exoplanet research, according to experts who described the planet as a “white whale of exoplanet atmosphere characterization.”

“For the last almost decade, the only thing we really knew about this planet was that the atmosphere was cloudy or hazy,” said Rob Zellem, exoplanet researcher  at NASA’s Jet Propulsion Laboratory in Southern California. “This paper has really cool implications for additional detailed climate interpretations – to look at the detailed physics happening inside this planet’s atmosphere.”

The research is published in the journal Nature.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Webb captures a Penguin and an Egg for its two-year anniversary
This “penguin party” is loud! The distorted spiral galaxy at center, the Penguin, and the compact elliptical galaxy at left, the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow.

This “penguin party” is loud! The distorted spiral galaxy at center, called the Penguin, and the compact elliptical galaxy at left, called the Egg, are locked in an active embrace. A new near- and mid-infrared image from the James Webb Space Telescope, taken to mark its second year of science, shows that their interaction is marked by a faint upside-down U-shaped blue glow. NASA, ESA, CSA, STScI

Today, July 12, marks two years since the first images from the James Webb Space Telescope were unveiled. In that time, Webb has discovered the most distant galaxies known, uncovered surprises about the early universe, peered into the atmospheres of distant planets, and produced a plethora of beautiful images of space.

Read more
James Webb snaps a colorful image of a star in the process of forming
L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. The more diffuse blue light and the filamentary structures in the image come from organic compounds known as polycyclic aromatic hydrocarbons (PAHs), while the red at the center of this image is an energized, thick layer of gases and dust that surrounds the protostar. The region in between, which shows up in white, is a mixture of PAHs, ionized gas, and other molecules.

L1527, shown in this image from NASA’s James Webb Space Telescope’s MIRI (Mid-Infrared Instrument), is a molecular cloud that harbors a protostar. It resides about 460 light-years from Earth in the constellation Taurus. NASA, ESA, CSA, STScI

A stunning new image from the James Webb Space Telescope shows a young star called a protostar and the huge outflows of dust and gas that are thrown out as it consumes material from its surrounding cloud. This object has now been observed using two of Webb's instruments: a previous version that was taken in the near-infrared with Webb's NIRCam camera, and new data in the mid-infrared taken with Webb's MIRI instrument.

Read more
See a stunning 3D visualization of astronomy’s most beautiful object
This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light).

This image is a mosaic of visible-light and infrared-light views of the same frame from the Pillars of Creation visualization. The three-dimensional model of the pillars created for the visualization sequence is alternately shown in the Hubble Space Telescope version (visible light) and the Webb Space Telescope version (infrared light). Greg Bacon (STScI), Ralf Crawford (STScI), Joseph DePasquale (STScI), Leah Hustak (STScI), Christian Nieves (STScI), Joseph Olmsted (STScI), Alyssa Pagan (STScI), Frank Summers (STScI), NASA's Universe of Learning

The Pillars of Creation are perhaps the most famous object in all of astronomy. Part of the Eagle Nebula, this vista was first captured by the Hubble Space Telescope in 1995, and has captivated the public ever since with its dramatic rising pillars of dust and gas that stretch several light-years high. The nebula has been imaged often since then, including again by Hubble in 2014 and more recently by the James Webb Space Telescope in 2022.

Read more