Skip to main content

James Webb Telescope catches a glimpse of young version of the Milky Way

Data from the James Webb Space Telescope has given a glimpse into what our galaxy was like in its formative years. Webb observed a galaxy called The Sparkler, which is analogous to what the Milky Way would have been like when it was young, when it had less mass and only a handful of globular clusters.

This image shows an artist impression of our Milky Way galaxy in its youth. Five small satellite galaxies, of various types and sizes, are in the process of being accreted into the Milky Way. These satellite galaxies also contribute globular star clusters to the larger galaxy. The Sparkler galaxy provides a snap-shot of an infant Milky Way as it accretes mass over cosmic time.
This image shows an artist impression of our Milky Way galaxy in its youth. Five small satellite galaxies, of various types and sizes, are in the process of being accreted into the Milky Way. These satellite galaxies also contribute globular star clusters to the larger galaxy. The Sparkler Galaxy provides a snapshot of an infant Milky Way as it accretes mass over cosmic time. James Josephides, Swinburne University.

Our galaxy is one of the older ones in the universe, as it is around 13.8 billion years old. Over its life, the Milky Way has grown as more and more stars formed, until it reached its current mass of around 1.5 trillion times the mass of the sun. It also now hosts around 200 globular clusters, which are dense clusters of stars.

By contrast, the Sparkler galaxy has just 3% the mass of the Milky Way and only 24 globular clusters. But this small galaxy is growing as it gobbles up nearby satellite galaxies and globular clusters, and it is predicted that it will eventually grow to match the mass of the Milky Way.

“We appear to be witnessing, firsthand, the assembly of this galaxy as it builds up its mass – in the form of a dwarf galaxy and several globular clusters,” said lead author Duncan Forbes of Australia’s Swinburne University in a statement. “We are excited by this unique opportunity to study both the formation of globular clusters, and an infant Milky Way, at a time when the Universe was only 1/3 of its present age.”

The Sparkler Galaxy is extremely far away, so its light takes billions of years to reach us. Researchers were able to get a better look at it using a technique called gravitational lensing, which means they are seeing it as it was around 9 billion years ago.

This ability to see a galaxy growing just 4 billion years after the Big Bang can help us understand the formation of globular clusters, according to co-author Aaron Romanowsky: “The origin of globular clusters is a long-standing mystery, and we are thrilled that JWST can look back in time to see them in their youth.”

The research is published in the Monthly Notices of the Royal Astronomical Society.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
James Webb spots tiniest known brown dwarf in stunning star cluster
The central portion of the star cluster IC 348. Astronomers combed the cluster in search of tiny, free-floating brown dwarfs.

A new image from the James Webb Space Telescope shows a stunning view of a star cluster that contains some of the smallest brown dwarfs ever identified. A brown dwarf, also sometimes known as a failed star, is an object halfway between a star and a planet -- too big to be a planet but not large enough to sustain the nuclear fusion that defines a star.

It may sound surprising, but the definition of when something stops being a planet and starts being a star is, in fact, a little unclear. Brown dwarfs differ from planets in that they form like stars do, collapsing due to gravity, but they don't sustain fusion, and their size can be comparable to large planets. Researchers study brown dwarfs to learn about what makes the difference between these two classes of objects.

Read more
James Webb provides a second view of an exploded star
A new high-definition image from NASA’s James Webb Space Telescope’s NIRCam (Near-Infrared Camera) unveils intricate details of supernova remnant Cassiopeia A (Cas A), and shows the expanding shell of material slamming into the gas shed by the star before it exploded. The most noticeable colors in Webb’s newest image are clumps of bright orange and light pink that make up the inner shell of the supernova remnant. These tiny knots of gas, comprised of sulfur, oxygen, argon, and neon from the star itself, are only detectable by NIRCam’s exquisite resolution, and give researchers a hint at how the dying star shattered like glass when it exploded.

When massive stars run out of fuel and come to the ends of their lives, their final phase can be a massive explosion called a supernova. Although the bright flash of light from these events quickly fades, other effects are longer-lasting. As the shockwaves from these explosions travel out into space and interact with nearby dust and gas, they can sculpt beautiful objects called supernova remnants.

One such supernova remnant, Cassiopeia A, or Cas A, was recently imaged using the James Webb Space Telescope's NIRCam instrument. Located 11,000 light-years away in the constellation of Cassiopeia, it is thought to be a star that exploded 340 years ago (as seen from Earth) and it is now one of the brightest radio objects in the sky. This view shows the shell of material thrown out by the explosion interacting with the gas that the massive star gave off in its last phases of life.

Read more
James Webb telescope captures a dramatic image of newborn star
The NASA/ESA/CSA James Webb Space Telescope reveals intricate details of the Herbig Haro object 797 (HH 797). Herbig-Haro objects are luminous regions surrounding newborn stars (known as protostars), and are formed when stellar winds or jets of gas spewing from these newborn stars form shockwaves colliding with nearby gas and dust at high speeds. HH 797, which dominates the lower half of this image, is located close to the young open star cluster IC 348, which is located near the eastern edge of the Perseus dark cloud complex. The bright infrared objects in the upper portion of the image are thought to host two further protostars. This image was captured with Webb’s Near-InfraRed Camera (NIRCam).

A new image of a Herbig-Haro object captured by the James Webb Space Telescope shows the dramatic outflows from a young star. These luminous flares are created when stellar winds shoot off in opposite directions from newborn stars, as the jets of gas slam into nearby dust and gas at tremendous speed. These objects can be huge, up to several light-years across, and they glow brightly in the infrared wavelengths in which James Webb operates.

This image shows Herbig-Haro object HH 797, which is located close to the IC 348 star cluster, and is also nearby to another Herbig-Haro object that Webb captured recently: HH 211.

Read more