Skip to main content

James Webb Telescope catches a glimpse of young version of the Milky Way

Data from the James Webb Space Telescope has given a glimpse into what our galaxy was like in its formative years. Webb observed a galaxy called The Sparkler, which is analogous to what the Milky Way would have been like when it was young, when it had less mass and only a handful of globular clusters.

This image shows an artist impression of our Milky Way galaxy in its youth. Five small satellite galaxies, of various types and sizes, are in the process of being accreted into the Milky Way. These satellite galaxies also contribute globular star clusters to the larger galaxy. The Sparkler galaxy provides a snap-shot of an infant Milky Way as it accretes mass over cosmic time.
This image shows an artist impression of our Milky Way galaxy in its youth. Five small satellite galaxies, of various types and sizes, are in the process of being accreted into the Milky Way. These satellite galaxies also contribute globular star clusters to the larger galaxy. The Sparkler Galaxy provides a snapshot of an infant Milky Way as it accretes mass over cosmic time. James Josephides, Swinburne University.

Our galaxy is one of the older ones in the universe, as it is around 13.8 billion years old. Over its life, the Milky Way has grown as more and more stars formed, until it reached its current mass of around 1.5 trillion times the mass of the sun. It also now hosts around 200 globular clusters, which are dense clusters of stars.

Recommended Videos

By contrast, the Sparkler galaxy has just 3% the mass of the Milky Way and only 24 globular clusters. But this small galaxy is growing as it gobbles up nearby satellite galaxies and globular clusters, and it is predicted that it will eventually grow to match the mass of the Milky Way.

“We appear to be witnessing, firsthand, the assembly of this galaxy as it builds up its mass – in the form of a dwarf galaxy and several globular clusters,” said lead author Duncan Forbes of Australia’s Swinburne University in a statement. “We are excited by this unique opportunity to study both the formation of globular clusters, and an infant Milky Way, at a time when the Universe was only 1/3 of its present age.”

The Sparkler Galaxy is extremely far away, so its light takes billions of years to reach us. Researchers were able to get a better look at it using a technique called gravitational lensing, which means they are seeing it as it was around 9 billion years ago.

This ability to see a galaxy growing just 4 billion years after the Big Bang can help us understand the formation of globular clusters, according to co-author Aaron Romanowsky: “The origin of globular clusters is a long-standing mystery, and we are thrilled that JWST can look back in time to see them in their youth.”

The research is published in the Monthly Notices of the Royal Astronomical Society.

Georgina Torbet
Georgina has been the space writer at Digital Trends space writer for six years, covering human space exploration, planetary…
James Webb captures a rare astronomical ring in the sky
This new NASA/ESA/CSA James Webb Space Telescope Picture of the Month features a rare cosmic phenomenon called an Einstein ring. What at first appears to be a single, strangely shaped galaxy is actually two galaxies that are separated by a large distance. The closer foreground galaxy sits at the center of the image, while the more distant background galaxy appears to be wrapped around the closer galaxy, forming a ring.

A striking new image from the James Webb Space Telescope shows a rare object called an Einstein ring. This shows what appears to be a ring-shaped object in the sky, but is actually created by two separate galaxies and the epic forces of gravity.

There's a useful astronomical phenomenon called gravitational lensing, in which a large object like a galaxy or a cluster of galaxies has so much mass that it actually bends spacetime. If a massive object sits in front of a more distant object, as seen from Earth, the massive object can act like a magnifying glass, letting us see the very distant object in more detail than would normally be possible. This is a relatively common finding in astronomical images, and is one way that scientists are able to study extremely distant galaxies.

Read more
Saying farewell to Gaia, as the Milky Way-mapping space telescope mission ends
gaia asteroid binaries mapping the stars of milky way pillars 1

Today astronomers are saying goodbye to a remarkable spacecraft: a telescope that has observed nearly two billion stars in its 12-year life. The Gaia Observatory from the European Space Agency (ESA) has now been powered down and sent into a "retirement orbit" around the sun -- but data from the mission will continue to be released and analyzed for years to come.

Gaia's goal was to create a 3D map of our entire galaxy, and so far it has revealed the structure of the Milky Way in the greatest detail ever obtained. It has uncovered evidence that our galaxy was formed from past galactic mergers, spotted new and previously unknown star clusters, and helped to discover objects like exoplanets and black holes. The enormous trove of data collected by the telescope has been the subject of three data releases so far, with the most recent in 2022, but there will be more data to come in future with a fourth data release planned for 2026.

Read more
James Webb captures gorgeous image of a Cosmic Tornado
The NASA/ESA/CSA James Webb Space Telescope observed Herbig-Haro 49/50, an outflow from a nearby still-forming star, in high-resolution near- and mid-infrared light with the NIRCam and MIRI instruments. The intricate features of the outflow, represented in reddish-orange color, provide detailed clues about how young stars form and how their jet activity affects the environment around them. A chance alignment in this direction of the sky provides a beautiful juxtaposition of this nearby Herbig-Haro object (located within our Milky Way) with a more distant, face-on spiral galaxy in the background.

The James Webb Space Telescope has captured another stunning image of space, this time showing the dramatic scenes around a baby star. Very young stars can throw off powerful jets of hot gas as they form, and when these jets collide with nearby dust and gas they form striking structures called Herbig-Haro objects.

This new image shows Herbig-Haro 49/50, located nearby to Earth at just 630 light-years away in the constellation Chamaeleon. Scientists have observed this object before, using the Spitzer Space Telescope, and they named the object the "Cosmic Tornado" because of its cone-like shape. To show the impressive powers of James Webb to capture objects like this one in exquisite detail, you can compare the Spitzer image from 2006 and the new James Webb image.

Read more