Skip to main content

James Webb captures the rarely-seen rings around Uranus

The James Webb Space Telescope spends much of its time peering out into distant regions of space searching for some of the earliest galaxies to exist, but it also occasionally turns its sights onto targets a little closer to home. Following up on its image of Neptune released last year, astronomers using Webb have just released a brand-new image of Uranus as you’ve never seen it before.

As Webb looks in the infrared wavelength, unlike telescopes like Hubble which look in the visible light spectrum, its image of Uranus picks out some features of the planet which are hard to see otherwise like its dusty rings. Uranus’ rings are almost invisible in the optical wavelength, but in this new image, they stand out proudly.

Zoomed-in image of Uranus reveals stunning views of the planet’s rings.
This zoomed-in image of Uranus, captured by Webb’s Near-Infrared Camera (NIRCam) on 6 February 2023, reveals stunning views of the planet’s rings. The planet displays a blue hue in this representative-color image, made by combining data from two filters (F140M, F300M) at 1.4 and 3.0 microns, shown here as blue and orange, respectively. NASA, ESA, CSA, STScI, J. DePasquale (STScI)

Uranus has some unusual features compared to other planets in our solar system, as it is almost completely tilted onto its side. Compared to the orbital plane in which the planets sit, Uranus’ axis sits at 98 degrees, meaning that during its northern summer, the sun shines directly onto its north pole and never sets. Researchers believe that this extreme tilt may be due to a massive body that grazed the planet at some point in its history, pushing it onto its side.

That tilt means that when Webb viewed Uranus, it saw its polar cap head-on: The blob of white to the right side of the planet in the image, which is visible throughout summer but disappears in autumn. Looking at this cap using Webb’s sensitive instruments, astronomers were able to see a brighter region in the center of the cap which hadn’t been observed before and also to see other features like two bright clouds (one on the edge of the polar cap and one on the right edge of the planet) which are related to storm activity.

And of course those rings. Uranus has 13 known rings, of which 11 are visible here — though some are bright enough to have merged into each other. These rings are composed of dust, are dotted with small moons, and are thought to be relatively young compared to the planet. Though the small moons within the rings are too faint to be seen, six of the planet’s more distant moons are visible in the wider-view image of the planet.

This wider view of the Uranian system with Webb’s NIRCam instrument features the planet Uranus as well as six of its 27 known moons (most of which are too small and faint to be seen in this short exposure). A handful of background objects, including many galaxies, are also seen.
This wider view of the Uranian system with Webb’s NIRCam instrument features the planet Uranus as well as six of its 27 known moons (most of which are too small and faint to be seen in this short exposure). A handful of background objects, including many galaxies, are also seen. NASA, ESA, CSA, STScI, J. DePasquale (STScI)

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
4 of Uranus’s icy moons could have liquid water oceans
Uranus is surrounded by its four major rings and 10 of its 27 known moons in this color-added view that uses data taken by the Hubble Space Telescope in 1998. A study featuring new modeling shows that four of Uranus’ large moons likely contain internal oceans.

When it comes to exploring planets in our solar system, most of the attention gets placed on those nearest to Earth which are easier to visit, and with powerful telescopes, we often observe the gas giants Jupiter and Saturn too. The more distant planets like Uranus and Neptune, however, are often overlooked and there's growing support among planetary scientists for sending a mission there. Now, new evidence gives even more impetus for a mission to Uranus, with a recent study showing that four of the planet's moons could host water.

Researchers from NASA's Jet Propulsion Laboratory reanalyzed data from the Voyager 2 mission which passed Uranus in the 1980s to look at the five largest of its 27 moons: Ariel, Umbriel, Titania, Oberon, and Miranda. Using computer modeling of how porous the surfaces are, they found that four of these moons likely have liquid water oceans beneath icy crusts.

Read more
James Webb detects water vapor in rocky planet’s atmosphere — maybe
This artist concept represents the rocky exoplanet GJ 486 b, which orbits a red dwarf star that is only 26 light-years away in the constellation Virgo. By observing GJ 486 b transit in front of its star, astronomers sought signs of an atmosphere. They detected hints of water vapor. However, they caution that while this might be a sign of a planetary atmosphere, the water could be on the star itself – specifically, in cool starspots – and not from the planet at all.

The hunt for habitable exoplanets is on, and with the James Webb Space Telescope, we finally have a tool that can not only detect the presence of a planet in another star system, but can also look at the composition of its atmosphere. That ability will eventually allow us to find Earth-like planets wthat are good candidates for searching for life, but measuring the atmosphere of something so far away isn't an easy matter.

Webb recently saw exciting signs in the form of water vapor detected in the vicinity of the exoplanet GJ 486 b. That could indicate the presence of water in its atmosphere, but it could also be from another source: the outer layer of the planet's host star. Researchers are working through the data and hope to use another of Webb's instruments to make the final call.

Read more
James Webb captures a stunning image of two galaxies merging
Shining like a brilliant beacon amidst a sea of galaxies, Arp 220 lights up the night sky in this view from NASA’s James Webb Space Telescope. Actually two spiral galaxies in the process of merging, Arp 220 glows brightest in infrared light, making it an ideal target for Webb. It is an ultra-luminous infrared galaxy (ULIRG) with a luminosity of more than a trillion suns. In comparison, our Milky Way galaxy has a much more modest luminosity of about ten billion suns.

The James Webb Space Telescope has captured a gorgeous image of a dramatic cosmic event: two galaxies colliding. The two spiral galaxies are in the process of merging, and are glowing brightly in the infrared wavelength in which James Webb operates, shining with the light of more than a trillion suns.

It is not uncommon for two (or more) galaxies to collide and merge, but the two pictured in this image are giving off particularly bright infrared light. The pair has a combined name, Arp 220, as they appear as a single object when viewed from Earth. Known as an ultraluminous infrared galaxy (ULIRG), Arp 220 glows far more brightly than a typical spiral galaxy like our Milky Way.

Read more