Skip to main content

NASA talks to spacecraft using both radio and laser communications on one dish

When NASA’s Psyche mission launched in October of last year, it had a special passenger on board: a test of a new communications system using lasers, named Deep Space Optical Communications (DSOC). That system sent back its first data in November, and now it has hit another milestone, with signals from the experiment being received by a hybrid antenna on Earth.

The vast majority of deep space missions communicate using radio frequencies, which is a tried and tested technology that has been in use for decades. However, there are bandwidth limitations to radio communications, and as missions collect ever larger amounts of data, a new communications technology is required to send them. That’s where laser or optical communications come in, as this can improve the available bandwidth by 10 or even 100 times over radio.

Now that Goldstone’s experimental hybrid antenna has proved that both radio and laser signals can be received synchronously by the same antenna, purpose-built hybrid antennas (like the one depicted here in an artist’s concept) could one day become a reality.
Now that Goldstone’s experimental hybrid antenna has proved that both radio and laser signals can be received synchronously by the same antenna, purpose-built hybrid antennas (like the one depicted here in an artist’s concept) could one day become a reality. NASA/JPL-Caltech

DSOC is testing whether sending signals from deep space crafts using laser communications is feasible. But the other half of the equation is receiving those signals on Earth. NASA’s Deep Space Network (DSN), which receives signals from these deep space missions, is now experimenting with a hybrid design antenna that can receive both radio and laser signals.

This experimental hybrid antenna has been able to receive both laser signals from DSOC and radio signals from Psyche for the first time. “Our hybrid antenna has been able to successfully and reliably lock onto and track the DSOC downlink since shortly after the tech demo launched,” said Amy Smith, DSN deputy manager at NASA’s Jet Propulsion Laboratory, in a statement. “It also received Psyche’s radio frequency signal, so we have demonstrated synchronous radio and optical frequency deep space communications for the first time.”

The hybrid antenna was built by retrofitting existing radio antenna hardware and adding a group of segmented mirrors to the very center of the dish. This allows the laser signals to be redirected to a camera placed on the long arms that extend from the dish’s structure.

“We use a system of mirrors, precise sensors, and cameras to actively align and direct laser from deep space into a fiber reaching the detector,” explained Barzia Tehrani, communications ground systems deputy manager and delivery manager for the hybrid antenna at JPL.

The aim is to upgrade more dishes in the DSN network to use both laser and radio communications, or even to construct new purpose-built hybrid antennae in the future. “We can have one asset doing two things at the same time; converting our communication roads into highways and saving time, money, and resources,” said Tehrani.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA’s Lucy spacecraft will soon make its first flyby of an asteroid
An artist's concept of the Lucy Mission.

NASA's Lucy spacecraft, which launched in 2021, is on its way to the orbit of Jupiter to study the Trojan asteroids there. It won't arrive there until 2027, but the spacecraft will have the opportunity to do some extra science before then, as it will soon be making a flyby of another asteroid called Dinkinesh. At less than half a mile wide, this small asteroid sits in the main asteroid belt between Mars and Jupiter, and it will be Lucy's first asteroid flyby.

Artist’s illustration of the Lucy concept. Southwest Research Institute

Read more
Meet the new NASA communications system that’s hitching a ride in today’s Psyche launch
The flight transceiver for NASA’s Deep Space Optical Communications technology demonstration can be identified by its large tube-like sunshade on the Psyche spacecraft, seen here inside a clean room at NASA’s Jet Propulsion Laboratory in Southern California.

The launch today of NASA's Psyche mission to visit a metal asteroid will include an extra bonus, as the spacecraft will carry a test of a new communications system.

Testing Space Lasers for Deep Space Optical Communications (Mission Overview)

Read more
Measure twice, laser once. Meet the scientists prodding NASA’s first asteroid sample
Two NASA personnel carry a container holding the sample gathered from the Bennu asteroid.

A view of the outside of the OSIRIS-REx sample collector. Sample material from asteroid Bennu can be seen on the middle right of the container. Scientists have found evidence of both carbon and water in initial analysis of this material. The bulk of the sample is located inside. NASA/Erika Blumenfeld & Joseph Aebersold

NASA today revealed its first sample collected from an asteroid. The OSIRIS-REx mission traveled 1.2 billion miles to visit asteroid Bennu and scoop up a sample, and last month that sample was dropped through Earth’s atmosphere before landing in the Utah desert.

Read more