Skip to main content

NASA wants to use a tiny satellite to help investigate exoplanet atmospheres

Illustration of an exoplanet
Illustration of an exoplanet NASA

NASA is considering launching a small satellite called Pandora which could help investigate the atmospheres of planets beyond our solar system. The idea is to use the satellite to look in both the visible and infrared wavelengths to understand the composition of planets’ atmospheres.

Many current exoplanet missions focus on discovering exoplanets or learning more details about them like their mass and distance from their star. The aim of the next generation of exoplanet missions is to learn more about the atmospheres of these planets, like what they are composed of.

“Exoplanetary science is moving from an era of planet discovery to an era of atmospheric characterization,” said Elisa Quintana, principal investigator for Pandora and an astrophysicist at NASA’s Goddard Space Flight Center, in a statement. “Pandora is focused on trying to understand how stellar activity affects our measurements of exoplanet atmospheres, which will lay the groundwork for future exoplanet missions aiming to find planets with Earth-like atmospheres.”

This proposed mission is part of NASA’s Pioneers project to create low-cost missions for astrophysics. Small satellites, like the type proposed for Pandora, are relatively much cheaper to build and to launch than more complex instruments like the current planet-hunting satellite TESS or the upcoming James Webb Space Telescope.

“Pandora’s long-duration observations in visible and infrared light are unique and well-suited for SmallSats,” said Quintana. “We are excited that Pandora will play a crucial role in NASA’s quest for finding other worlds that could potentially be habitable.”

With thousands of exoplanets discovered in the last decade, learning about their atmospheres is key to identifying planets that could potentially host life.

“Pandora is the right mission at the right time because thousands of exoplanets have already been discovered, and we are aware of many that are amenable to atmospheric characterization that orbit small active stars,” said Jessie Dotson, an astrophysicist at NASA’s Ames Research Center in California’s Silicon Valley and the deputy principal investigator for Pandora. “The next frontier is to understand the atmospheres of these planets, and Pandora would play a key role in uncovering how stellar activity impacts our ability to characterize atmospheres. It would be a great complement to Webb’s mission.”

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
NASA conducts ‘moonwalks’ in the Arizona desert for Artemis lunar mission
NASA astronauts training in Arizona.

NASA astronauts Kate Rubins and Andre Douglas push a tool cart loaded with lunar tools through the San Francisco Volcanic Field north of Flagstaff, Arizona, as they practice moonwalking operations for Artemis III. NASA/Josh Valcarcel

Being an astronaut may sound glamorous, but it isn’t all rocket launches and floating around the International Space Station. The vast majority of the time is spent in training with your feet planted on terra firma.

Read more
How your aurora photographs are helping NASA study solar storms
A coronal aurora appeared over southwestern British Columbia on May 10, 2024.

A coronal aurora appears over southwestern British Columbia on May 10, 2024. NASA/Mara Johnson-Groh

This week has seen one of the most dramatic solar storms in decades, leading to views of auroras seen around the world as charged particles from the sun interacted with Earth's atmosphere. But the events weren't only notable for the gorgeous colors seen in the sky -- they are also a way for scientists to learn about the sun and how its activity varies over time.

Read more
James Webb telescope peers at the atmosphere of a rocky hell world
This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometres (0.015 astronomical units), completing one full orbit in less than 18 hours. In comparison, Mercury is 25 times farther from the Sun than 55 Cancri e is from its star. The system, which also includes four large gas-giant planets, is located about 41 light-years from Earth, in the constellation Cancer.

This artist’s concept shows what the exoplanet 55 Cancri e could look like. Also called Janssen, 55 Cancri e is a so-called super-Earth, a rocky planet significantly larger than Earth but smaller than Neptune, which orbits its star at a distance of only 2.25 million kilometers (0.015 astronomical units), completing one full orbit in less than 18 hours. NASA, ESA, CSA, R. Crawford (STScI)

When it comes to learning about exoplanets, or planets beyond our solar system, the James Webb Space Telescope is providing more information than ever before. Over the last decade or so, thousands of exoplanets have been discovered, with details available about these worlds, such as their orbits and their size or mass. But now we're starting to learn about what these planets are actually like, including details of their atmospheres. Webb recently investigated the atmosphere around exoplanet 55 Cancri e, finding what could be the first atmosphere of a rocky planet discovered outside the solar system.

Read more