Skip to main content

Two rocky super-Earths discovered just 33 light-years away

Researchers using NASA’s Transiting Exoplanet Survey Satellite (TESS) have discovered two rocky exoplanets in a system in our cosmic backyard, located just 33 light-years from Earth. These are some of the closest rocky planets discovered to date, orbiting around a small, cool star called HD 260655.

The two planets are of a type called a super-Earth, at 1.2 and 1.5 times the size of our planet, but they aren’t habitable as they orbit close to their star and have high surface temperatures. According to NASA the nearest planet to the star, called HD 260655 b, has a surface temperature estimated at 816 degrees Fahrenheit (435 Celsius), while its companion HD 260655 c is estimated to have a temperature of 543 Fahrenheit (284 Celsius).

Illustration of two newly discovered, rocky "super-Earths" that could be ideal for follow-up atmospheric observations.
Illustration of two newly discovered, rocky “super-Earths” that could be ideal for follow-up atmospheric observations. NASA/JPL-Caltech

Estimating the surface temperature of exoplanets is tricky though because it depends on whether the planets have an atmosphere. In our solar system, for example, Venus is hotter on its surface than Mercury even though it is farther from the sun because its thick atmosphere traps the heat.

So to understand more about exoplanets, we need to measure their atmospheres — something which has historically been very difficult but will be possible with new tools like the James Webb Space Telescope, set to begin science operations this summer.

And these two planets are ideal candidates for studying exoplanet atmospheres, because they are relatively close to us and because the star around which they orbit is bright despite its small size.

“Both planets in this system are each considered among the best targets for atmospheric study because of the brightness of their star,” explained one of the researchers, Michelle Kunimoto of MIT, in a statement. “Is there a volatile-rich atmosphere around these planets? And are there signs of water or carbon-based species? These planets are fantastic test beds for those explorations.”

Artist's drawing of a satellite exploring two super-Earths.
MIT astronomers have discovered a new multiplanet system that lies just 10 parsecs, or about 33 light-years, from Earth, making it one of the closest known multiplanet systems to our own. The star at the heart of the system likely hosts at least two terrestrial, Earth-sized planets. MIT News, with TESS Satellite figure courtesy of NASA

James Webb will be able to investigate exoplanet atmospheres by looking at the light which shines from a star and passes through a planet’s atmosphere. By splitting this light into a spectrum, researchers can see which wavelengths have been absorbed by particular molecules, and that allows them to work out what the atmosphere is composed of.

There’s no indication yet on whether these two newly discovered planets have atmospheres or not, but they are exciting targets for further investigation.

The research was presented at the meeting of the American Astronomical Society on June 15 and will be published in the journal Astronomy & Astrophysics.

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers discover extremely hot exoplanet with ‘lava hemisphere’
Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old. It's also the closest discovered Earth-sized planet this young, at about 400 million years old.

Astronomers have discovered an Earth-sized exoplanet with an unusually extreme climate where one half of the planet is thought to be covered in lava. The planet HD 63433 d is tidally locked, meaning one side of it always faces its star while the other half always faces out into space, creating a huge difference in temperatures between the planet's two faces.

Like Kepler-10 b, illustrated above, the exoplanet HD 63433 d is a small, rocky planet in a tight orbit of its star. HD 63433 d is the smallest confirmed exoplanet younger than 500 million years old.  NASA/Ames/JPL-Caltech/T. Pyle

Read more
See the weather patterns on a wild, super hot exoplanet
This is an artist’s impression of the exoplanet WASP 121-b, also known as Tylos. The exoplanet’s appearance is based on Hubble data of the object. Using Hubble observations, another team of scientists had previously reported the detection of heavy metals such as magnesium and iron escaping from the upper atmosphere of the ultra-hot Jupiter exoplanet, marking it as the first of such detection. The exoplanet is orbiting dangerously close to its host star, roughly 2.6% of the distance between Earth and the Sun, placing it on the verge of being ripped apart by its host star's tidal forces. The powerful gravitational forces have altered the planet's shape.

When it comes to understanding exoplanets, or planets outside our solar system, the big challenge is in not only finding these planets, but also understanding what they are like. And one of the biggest factors that scientists are interested in is whether an exoplanet has an atmosphere and, if so, what it is composed of. But, just like with weather here on Earth, exoplanet atmospheres aren't static. So the Hubble Space Telescope was recently used for an intriguing observation -- comparing data from an exoplanet atmosphere that had previously been observed, to see how it changed over time.

Hubble looked at planet WASP-121 b, an extreme planet that is so close to its star that a year there lasts just 30 hours. Its surface temperatures are over 3,000 Kelvins, or 5,000 degrees Fahrenheit, which researchers predict would lead to some wild weather phenomena. As it is such an extreme planet, WASP-121 b is well-known and has been observed by Hubble several times over the years, beginning in 2016.

Read more
Super high energy particle falls to Earth; its source is a mystery
Artist’s illustration of ultra-high-energy cosmic ray astronomy to clarify extremely energetic phenomena.

Researchers have detected one of the highest-energy particles ever falling to Earth. Cosmic rays are high-energy particles that come from sources in space such as the sun, but this recent detection is more powerful than anything that can be explained by known sources in our galaxy or even beyond. The particle had an energy of 2.4 x 1020eV, which is millions of times the energy of the particles produced in a particle collider.

Artist’s illustration of ultra-high-energy cosmic ray astronomy to clarify extremely energetic phenomena. Osaka Metropolitan University/Kyoto University/Ryuunosuke Takeshige

Read more