Skip to main content

Two rocky super-Earths discovered just 33 light-years away

Researchers using NASA’s Transiting Exoplanet Survey Satellite (TESS) have discovered two rocky exoplanets in a system in our cosmic backyard, located just 33 light-years from Earth. These are some of the closest rocky planets discovered to date, orbiting around a small, cool star called HD 260655.

The two planets are of a type called a super-Earth, at 1.2 and 1.5 times the size of our planet, but they aren’t habitable as they orbit close to their star and have high surface temperatures. According to NASA the nearest planet to the star, called HD 260655 b, has a surface temperature estimated at 816 degrees Fahrenheit (435 Celsius), while its companion HD 260655 c is estimated to have a temperature of 543 Fahrenheit (284 Celsius).

Illustration of two newly discovered, rocky "super-Earths" that could be ideal for follow-up atmospheric observations.
Illustration of two newly discovered, rocky “super-Earths” that could be ideal for follow-up atmospheric observations. NASA/JPL-Caltech

Estimating the surface temperature of exoplanets is tricky though because it depends on whether the planets have an atmosphere. In our solar system, for example, Venus is hotter on its surface than Mercury even though it is farther from the sun because its thick atmosphere traps the heat.

So to understand more about exoplanets, we need to measure their atmospheres — something which has historically been very difficult but will be possible with new tools like the James Webb Space Telescope, set to begin science operations this summer.

And these two planets are ideal candidates for studying exoplanet atmospheres, because they are relatively close to us and because the star around which they orbit is bright despite its small size.

“Both planets in this system are each considered among the best targets for atmospheric study because of the brightness of their star,” explained one of the researchers, Michelle Kunimoto of MIT, in a statement. “Is there a volatile-rich atmosphere around these planets? And are there signs of water or carbon-based species? These planets are fantastic test beds for those explorations.”

Artist's drawing of a satellite exploring two super-Earths.
MIT astronomers have discovered a new multiplanet system that lies just 10 parsecs, or about 33 light-years, from Earth, making it one of the closest known multiplanet systems to our own. The star at the heart of the system likely hosts at least two terrestrial, Earth-sized planets. MIT News, with TESS Satellite figure courtesy of NASA

James Webb will be able to investigate exoplanet atmospheres by looking at the light which shines from a star and passes through a planet’s atmosphere. By splitting this light into a spectrum, researchers can see which wavelengths have been absorbed by particular molecules, and that allows them to work out what the atmosphere is composed of.

There’s no indication yet on whether these two newly discovered planets have atmospheres or not, but they are exciting targets for further investigation.

The research was presented at the meeting of the American Astronomical Society on June 15 and will be published in the journal Astronomy & Astrophysics.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Astronomers discover Earth-sized exoplanet covered in volcanoes
Exoplanet LP 791-18 d, illustrated in this artist’s concept, is an Earth-size world about 90 light-years away. A more massive planet in the system, shown as a small blue dot on the right, exerts a gravitational tug that may result in internal heating and volcanic eruptions, like on Jupiter’s moon Io.

Astronomers have discovered an Earth-sized planet that is highly volcanically active -- an unusual finding that means it could possibly support life. The newly discovered planet, LP 791-18d, is thought to be covered in volcanoes and could be as active as Jupiter's moon Io, which is the most volcanically active body in our solar system.

Exoplanet LP 791-18 d, shown in this artist’s concept, is an Earth-size world about 90 light-years away. A more massive planet in the system, shown as a small blue dot on the right, exerts a gravitational tug on the exoplanet that may result in internal heating and volcanic eruptions, like on Jupiter’s moon Io. NASA’s Goddard Space Flight Center/Chris Smith (KRBwyle)

Read more
Astronomers watch a preview of the destruction of the Earth
Astronomers using the Gemini South telescope in Chile, operated by NSF’s NOIRLab, have observed the first compelling evidence of a dying Sun-like star engulfing an exoplanet. The “smoking gun” of this event was seen in a long and low-energy outburst from the star — the telltale signature of a planet skimming along a star’s surface. This never-before-seen process may herald the ultimate fate of Earth when our own Sun nears the end of its life in about five billion years.

Astronomers recently caught the grisly sight of an exoplanet being devoured by its star, in a preview of what will eventually happen to the Earth. The sun-like star is located within our galaxy, around 12,000 light-years away, and has puffed up into an end-of-life state called a red giant. As it grows, it expands outward, which is how it was able to swallow the Jupiter-sized planet that had been in orbit around it.

The researchers were able to spot the event because of the distinctive brightening pattern of the star, which is similar to what we can expect will eventually happen to our sun. “We are seeing the future of the Earth,” said lead author of the research, Kishalay De of the Massachusetts Institute of Technology (MIT), in a statement. “If some other civilization was observing us from 10,000 light-years away while the sun was engulfing the Earth, they would see the sun suddenly brighten as it ejects some material, then form dust around it, before settling back to what it was.”

Read more
James Webb detects water vapor in rocky planet’s atmosphere — maybe
This artist concept represents the rocky exoplanet GJ 486 b, which orbits a red dwarf star that is only 26 light-years away in the constellation Virgo. By observing GJ 486 b transit in front of its star, astronomers sought signs of an atmosphere. They detected hints of water vapor. However, they caution that while this might be a sign of a planetary atmosphere, the water could be on the star itself – specifically, in cool starspots – and not from the planet at all.

The hunt for habitable exoplanets is on, and with the James Webb Space Telescope, we finally have a tool that can not only detect the presence of a planet in another star system, but can also look at the composition of its atmosphere. That ability will eventually allow us to find Earth-like planets wthat are good candidates for searching for life, but measuring the atmosphere of something so far away isn't an easy matter.

Webb recently saw exciting signs in the form of water vapor detected in the vicinity of the exoplanet GJ 486 b. That could indicate the presence of water in its atmosphere, but it could also be from another source: the outer layer of the planet's host star. Researchers are working through the data and hope to use another of Webb's instruments to make the final call.

Read more