Skip to main content

Hubble is investigating mysterious ‘spokes’ in Saturn’s rings

Saturn is famous for its beautiful rings, but these rings have a strange feature: “spokes” which appear intermittently. These spots in the rings can be light or dark and can look like blobs or like lines stretching radially outward from the planet, and they appear in a regular cycle related to the planet’s equinox. Now, the Hubble Space Telescope has the opportunity to study these oddities of the rings in more detail and researchers hope they can learn more about what causes these features.

Saturn in its "spoke season" with the appearance of two smudgy spokes in the B ring, on the left in the image.
NASA’s Hubble Space Telescope has observation time devoted to Saturn each year, thanks to the Outer Planet Atmospheres Legacy (OPAL) program, and the dynamic gas giant planet always shows us something new. This latest image heralds the start of Saturn’s “spoke season” with the appearance of two smudgy spokes in the B ring, on the left in the image. SCIENCE: NASA, ESA, Amy Simon (NASA-GSFC) IMAGE PROCESSING: Alyssa Pagan (STScI)

The spokes were first noticed by the Voyager mission which passed in the 1980s, and since then they have been seen just before and after the equinox: the time at which day and night are of equal length across the planet because the sun is directly over the equator. On Earth, we experience two equinoxes each year, and the same is true for Saturn — but because Saturn is further out in its orbit and its year is much longer, its equinoxes occur just once every 15 Earth years.

Saturn’s next autumnal equinox is coming up on May 2025, so researchers are using Hubble to observe the planet and its rings at this key time. “Thanks to Hubble’s OPAL program, which is building an archive of data on the outer solar system planets, we will have longer dedicated time to study Saturn’s spokes this season than ever before,” said Amy Simon, head of the Hubble Outer Planet Atmospheres Legacy (OPAL) program, in a statement.

That’s good news because although the researchers know they’ll see spokes around this time, they don’t know exactly when they will start appearing.

“Despite years of excellent observations by the Cassini mission, the precise beginning and duration of the spoke season is still unpredictable, rather like predicting the first storm during hurricane season,” Simon explained.

The spokes are currently visible as two grey smudges within the rings to the left of the planet in the image above, and though these may fade the researchers expect to see more in the coming months.

The current theory of the spokes’ origin is that they are related to Saturn’s magnetic field, as charged particles from the sun interact with it in a way that could charge particles within the rings, shifting these particles out of place with the rest of the ring structure. But astronomers need to do more research to be sure of this theory — and to find out whether similar spokes could occur on other planets with rings, such as Neptune or Jupiter.

“It’s a fascinating magic trick of nature we only see on Saturn —for now at least,” Simon said.

Editors' Recommendations

Georgina Torbet
Georgina is the Digital Trends space writer, covering human space exploration, planetary science, and cosmology. She…
Hubble image shows a lonely star glowing over an irregular background galaxy
The bright star BD+17 2217. Arp 263 – also known as NGC 3239 in the foreground and irregular galaxy Arp 263 in the background.

This week's image from the Hubble Space Telescope is notable for the way it was composed as much as for the object it shows. Composed of two different exposures which have been merged, it shows the star BD+17 2217 shining over the background irregular galaxy Arp 263.

Irregular galaxies are those with irregular structures, unlike elliptical galaxies or spiral galaxies such as our Milky Way. Arp 263 is patchy and cloudy, with some areas glowing brightly due to star formation while other areas appear practically bare. Such galaxies are typically formed due to interactions with other galaxies, which can occur when a massive galaxy passes by and pulls the original galaxy out of shape. In the case of Arp 263, it is thought that it developed its irregular shape when two galaxies merged.

Read more
Hubble observes a cluster of boulders around impacted asteroid Dimorphos
A NASA/ESA Hubble Space Telescope image of the asteroid Dimorphos taken on 19 December 2022.

Last year, NASA deliberately crashed a spacecraft into an asteroid, in a first-of-its-kind test of planetary defense. At the time, telescopes around the world including the Hubble Space Telescope observed the impact between the DART spacecraft and the Dimorphos asteroid, capturing footage of the plumes of dust thrown up. Now, Hubble has observed Dimorphos once again and seen that a number of boulders have been ejected from the asteroid.

The Hubble image shown below was taken on 19 December 2022, around four months after the impact, and shows the bright streak of the asteroid across the sky, surrounded by small boulders which were knocked loose during the impact. This view was only possible after several months as the impact initially sent up large amounts of dust which made it difficult to see the asteroid in detail.

Read more
One galaxy, two views: see a comparison of images from Hubble and Webb
The peculiar galaxy NGC 3256 takes centre stage in this image from the NASA/ESA Hubble Space Telescope. This distorted galaxy is the wreckage of a head-on collision between two spiral galaxies which likely occurred 500 million years ago, and it is studded with clumps of young stars which were formed as gas and dust from the two galaxies collided.

It might not seem obvious why astronomers need multiple different powerful space telescopes. Surely a more powerful telescope is better than a less powerful one? So why are there multiple different telescopes in orbit, either around Earth or around the sun?

The answer is to do with two main factors. One is the telescope's field of view, meaning how much of the sky it looks at. Some telescopes are useful for looking at large areas of the sky in less detail, working as survey telescopes to identify objects for further research or to look at the universe on a large scale -- like the recently launched Euclid mission. While others, like the Hubble Space Telescope, look at small areas of the sky in great detail, which is useful for studying particular objects.

Read more